
40    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS

Raising Hell, Catching Errors
D A V I D B E A Z L E Y

One of my favorite Python topics to talk about is error handling—
specifically, how to use and not use exceptions. Error handling is
hard and tricky. Error handling can mean the difference between an

application that can be debugged and one that can’t. Error handling can blow
your business up in the middle of the night if you aren’t careful. So, yes, how
you handle errors is important. In this article, I’ll dig into some of the details
of exceptions, some surefire techniques for shooting yourself in the foot, and
some ways to avoid it.

Exception Handling Basics
To signal errors, Python almost always uses exceptions. For example:

 >>> int('42')

 42

 >>> int('fortytwo')

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 ValueError: invalid literal for int() with base 10: 'fortytwo'

 >>>

If you want to catch an exception, use the try-except statement to enclose a block of code
where a failure might occur. For example:

 def spam(s):

 try:

 x = int(s)

 print('Value is', x)

 except ValueError as e:

 print('Failed: Reason %s' % e)

 >>> spam('42')

 Value is 42

 >>> spam('fortytwo')

 Failed: Reason invalid literal for int() with base 10: 'fortytwo'

 >>>

Exceptions always have an associated value that is an instance of the exception type. The “as

e” clause on the except captures this instance and puts it into a local variable e. If you print
out the value, you’ll usually just get the error message.

If you want to catch different kinds of errors, you can have multiple except blocks. For
example:

 try:

 ...

David Beazley is an open
source developer and author of
the Python Essential Reference
(4th Edition, Addison-Wesley,
2009). He is also known as the

creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com
/ply.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses.
dave@dabeaz.com

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  41

COLUMNS
Raising Hell, Catching Errors

 except ValueError as e:

 ...

 except TypeError as e:

 ...

Or, if you want to group the exceptions together so that they’re
handled by the same except block, use a tuple:

 try:

 ...

 except (ValueError, TypeError) as e:

 ...

Certain functions in Python don’t raise exceptions but rely on
return codes instead. Such functions are rare, but one such
example is the find() method of strings, which returns -1 if no
match can be found:

 >>> s = 'Hello World'

 >>> s.find('Hell')

 0

 >>> s.find('Cruel') # No match

 -1

 >>>

The end-of-file condition on files and sockets is also signaled by
returning an empty string instead of raising an exception. For
example:

 >>> f = open('somefile.txt', 'r')

 >>> data = f.read() # Read all of the data

 >>> f.read() # Read at EOF

 ‘’

 >>>

Again, such examples of using return codes are rare. Most of the
time errors are indicated through exceptions, and catching an
exception is a straightforward process using try-except.

How to Indicate an Error
In your own code, don’t be shy about raising exceptions. If there
is some kind of problem, use the raise statement to announce it:

 def spam(x):

 if x < 0:

 raise ValueError('x must be >= 0')

 ...

A common mistake made by newcomers is to indicate errors in
some other way. For example, with a print statement and maybe
a special return code:

 def spam(x):

 if x < 0:

 print('x must be >= 0')

 return None

 ...

There are all sorts of problems with such an approach. First, the
output of the print() is easily lost or overlooked. Moreover, it’s
pretty likely that other code won’t be expecting the None return
code and won’t check for it. Thus, the error might just disappear
into the void. This can make for an interesting debugging session
later. No, it is almost always better to loudly announce errors
with the raise statement. That is the Python way—embrace it.

Another immediate problem with raising an exception concerns
the exception type that you’re supposed to use. Python pre-
defines about two dozen built-in exception types that are always
available (i.e., NameError, ArithmeticError, IOError, etc.). Most
of these errors are most applicable to Python itself, but a few spe-
cific exceptions might be useful in application code. A ValueEr-

ror is commonly used to indicate a bad value as shown. Raise a
TypeError if you want to signal an error related to bad types (e.g.,
a list was expected, but the caller passed in a tuple). A generic
RuntimeError is available to indicate other kinds of problems.

In larger applications, it may make more sense to define your
own hierarchy of exceptions instead of relying on the built-ins.
This is easily done using classes and inheritance. For example,
you start by making a new top-level exception like this:

 class MyError(Exception):

 pass

You can then make more specific kinds of errors that inherit
from MyError:

 class MyAuthenticationError(MyError):

 pass

 class MyIntegrityError(MyError):

 pass

 class MyTimeoutError(MyError):

 pass

 class MyBadValueError(MyError):

 pass

Use the raise statement as before to indicate the exact error that
you want:

 def spam(x):

 if x < 0:

 raise MyBadValueError('x must be >= 0')

 ...

One advantage of defining your own hierarchy of exceptions is
that you can more easily isolate errors originating from your
application as opposed to those from Python itself or any third-
party libraries you might have installed. You simply catch the
top-level exception like this:

42    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS
Raising Hell, Catching Errors

 try:

 ...

 except MyError as e:

 # Catches any exception that subclasses MyError

 ...

Isolating your exceptions can be a useful tactic for debugging.
For example, if the code dies from a built-in exception, it might
indicate a bug in your code, whereas code that dies due to one of
your custom exceptions might indicate a bug in someone else’s
code (e.g., whoever is calling your code). By being more precise
about exceptions, you can more easily assign blame when things
go wrong—you want that.

What Exceptions Should You Catch?
Given that exceptions are the preferred way of indicating errors,
what exceptions are you supposed to catch in your code anyway?
It might seem counterintuitive, but I almost never write code to
catch exceptions—instead, I simply let them propagate out, pos-
sibly causing the program to crash. As an example, consider this
code fragment:

 def parse_file(filename):

 f = open(filename)

 ...

Now, suppose that the user passes a bad filename and the open()
function fails with an IOError exception. You could write the
code to account for that possibility by wrapping the open() with
a try-except like this:

 def parse_file(filename):

 try:

 f = open(filename)

 except IOError as e:

 # Handle the error in some way ???

 ...

 ...

However, if you do this, it suddenly raises all sorts of questions.
For example, what are you supposed to do in the except block?
Do you print a message? Do you raise an exception? If you raise
an exception, how is it any different from open() raising an IOEr-

ror? Last but not least, even if the code catches the error, is there
any way that the function can proceed afterwards? If there is no
file, there is nothing to parse. How would it work?

As a rule of thumb, you should probably never catch exceptions
unless your code can sensibly recover and take action in some
way. Just to illustrate, a much more likely scenario would be a
parsing function that needed to account for bad values:

 def parse_file(filename):

 f = open(filename)

 for line in f:

 fields = line.split()

 try:

 x = float(fields[0])

 except ValueError:

 x = float('nan')

 ...

Here, catching a possible exception and using it to take correc-
tive action makes sense. These are the kinds of errors you should
be concerned with—not errors for which there is no hope of sane
recovery. Put another way, if something is going to fail spectacu-
larly and there’s no hope, it’s often better to step back and let it
fail. Don’t let your code get mixed up in the middle of the mess.

Beware the Diaper Pattern
Now wait just a minute—surely I can’t be advocating a coding
style where you never catch errors. Python code might be run-
ning some kind of important service where it can’t just crash and
disappear with a traceback. It’s important to catch the nuance
of the previous section. Basically, you shouldn’t be writing code
that attempts to catch exceptions for which no recovery is possi-
ble at that point. The possibility of a sane recovery really depends
on context. For example, a parsing function clearly can’t con-
tinue if it can’t read data. However, if that function was invoked
from within a larger framework executing a request on behalf of
a client in a distributed system, there might be code that broadly
catches failures and reports them back to the client.

A common technique for broad exception handling is to enclose
code in a try-except block like this:

 try:

 ...

 statements

 ...

 except Exception as e: # Catch any error

 # Handle the failure

 ...

Exception is the root of all error-related exceptions in Python
(note: certain exceptions such as SystemExit derive from
BaseException and won’t be caught here). Thus, this code will
catch any programming error that might occur.

This is the so-called “diaper pattern” in action—code that
catches anything. It’s also one of the most dangerous exception-
handling approaches to be using. Don’t be the programmer that
writes code like this:

www.usenix.org	   A P R I L 20 1 5  VO L . 4 0, N O. 2  43

COLUMNS
Raising Hell, Catching Errors

 try:

 ...

 statements

 ...

 except Exception as e:

 print('Computer says no')

 return

Or worse yet:

 try:

 ...

 statements

 ...

 except Exception as e:

 # TODO: Whoops, it failed.

 pass

Such code is the fastest way to create an undebuggable program.
Any failure whatsoever, including common programming errors
such as a misspelled variable name, will simply result in a vague
error message. You’ll never be able to figure out what’s wrong.

If you’re going to catch all errors, it is imperative that you report
the actual reason for the failure. At a minimum, you might do
this:

 try:

 ...

 statements

 ...

 except Exception as e:

 print('Computer says no. Reason %s' % e)

 return

A much better alternative is to make the full traceback avail-
able somewhere. If it’s not going to be reported directly to the
end-user for some reason, it can be written to a log file using the
logging module and the inclusion of the exc_info=True option to
logging functions. For example:

 import logging

 log = logging.getLogger('mylog')

 ...

 try:

 ...

 statements

 ...

 except Exception as e:

 print('Computer says no.')

 log.error('FAILURE: %s', e, exc_info=True)

 return

Alternatively, you can produce the traceback message yourself
and obtain it as a string using the traceback module. This can
be useful if you want to do something with the traceback such as
redirect it elsewhere (e.g., to an email message, a database, etc.).
For example:

 import traceback

 try:

 ...

 statements

 ...

 except Exception as e:

 print('Computer says no.')

 tb = traceback.format_exc() # Create the traceback message

 # Do something with tb

 ...

 return

It should be noted that the traceback module has additional
functions for pulling apart stack traces and formatting them.
Consult the online documentation [1] for more information.

If your intent is to merely log the error while allowing it to propa-
gate, you can use a bare raise statement to re-raise the excep-
tion. For example:

 try:

 ...

 except Exception as e:

 log.error('FAILURE: %s', e, exc_info=True)

 raise # Reraise the exception

You, Yes You Did It!
As much as you might try to sanely handle errors in your code,
dealing with errors in large systems is still tricky. One particu-
larly nasty problem arises if you capture exceptions and then
raise a different kind of exception to encapsulate the “failure” in
some broad way. For example, consider the following code:

 class OperationalError(Exception):

 pass

 def run_function(func, *args, **kwargs):

 try:

 return func(*args, **kwargs)

 except Exception as e:

 raise OperationalError('Function failed. Reason %s' % e)

Now, watch what happens in Python 2:

 >>> def add(x, y):

 ... return x + y

 ...

 >>> run_function(add, 2, 3)

 5

44    A P R I L 20 1 5  VO L . 4 0, N O. 2 	 www.usenix.org

COLUMNS
Raising Hell, Catching Errors

 >>> run_function(add, 2, '3')

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 5, in run_function

 __main__.OperationalError: Function failed. Reason

unsupported operand type(s) for +: 'int' and 'str'

 >>>

Here, you get an error message and it has some details about the
failure, but the information is woefully incomplete. In particular,
the traceback contains no useful information about what actu-
ally happened in the add() function itself.

Chained exceptions [2] is one area where Python 3 shines. If you
try this same code on Python 3, you get two tracebacks:

 >>> run_function(add, 2, '3')

 Traceback (most recent call last):

 File "<stdin>", line 3, in run_function

 File "<stdin>", line 2, in add

 TypeError: unsupported operand type(s) for +: 'int' and 'str'

 During handling of the above exception, another exception

occurred:

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 5, in run_function

 __main__.OperationalError: Function failed. Reason

unsupported operand type(s) for +: 'int' and 'str'

>>>

This is exception chaining in action. You can further refine the
exact error message by adding a from modifier to the raise state-
ment like this:

 class OperationalError(Exception):

 pass

 def run_function(func, *args, **kwargs):

 try:

 return func(*args, **kwargs)

 except Exception as e:

 raise OperationalError('Function failed') from e

Now, the error message changes to the following:

 >>> run_function(add, 2, '3')

 Traceback (most recent call last):

 File "<stdin>", line 3, in run_function

 File "<stdin>", line 2, in add

 TypeError: unsupported operand type(s) for +: 'int' and 'str'

 The above exception was the direct cause of the following

exception:

 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 5, in run_function

 __main__.OperationalError: Function failed

 >>>

In this case, you’re seeing a chain of exceptions and information
about causation. That’s pretty nice.

Final Thoughts (and Advice)
Proper handling of errors is an important aspect of any appli-
cation. However, you want to make sure you do it in a way that
allows you to maintain your sanity. The following rules of thumb
provide a summary of some of the ideas in this article:

◆◆ Prefer the use of exceptions to indicate errors. It is the most
common Python style and will be less error prone than alterna-
tives such as returning special codes from functions.

◆◆ Don’t write code that catches exceptions from which no sen-
sible recovery is possible. It’s better to simply let the exception
propagate to some other code that knows how to deal with the
error.

◆◆ Be extremely careful when writing code that catches all errors.
Make sure you always report diagnostic information some-
where where it can be found by developers. Otherwise, you’ll
quickly end up with undebuggable Python code.

As an aside, a recent article in ;login: about catastrophic failures in
distributed systems [3] reported that nearly 35% of these problems
were caused by trivial mistakes in exception handling. Although
not specific to Python, that article is definitely worth a read.

References
[1] https://docs.python.org/2/library/traceback.html (Trace-
back Module).

[2] https://www.python.org/dev/peps/pep-3134/ (Exception
Chaining).

[3] D. Yuan et al., “Simple Testing Can Prevent Most Critical
Failures: An Analysis of Production Failures in Distributed
Data-Intensive Systems,” ;login:, vol. 40, no. 1, February 2015
(USENIX).

Donate Today: The USENIX Annual Fund
Many USENIX supporters have joined us in recognizing the importance of open access over the years. We are thrilled
to see many more folks speaking out about this issue every day. If you also believe that research should remain open
and available to all, you can help by making a donation to the USENIX Annual Fund at www.usenix.org/annual-fund.

With a tax-deductible donation to the USENIX Annual Fund, you can show that you value our Open Access Policy and
all our programs that champion diversity and innovation.

The USENIX Annual Fund was created to supplement our annual budget so that our commitment to open access and
our other good works programs can continue into the next generation. In addition to supporting open access, your
donation to the Annual Fund will help support:

• USENIX Grant Program for Students and Underrepresented Groups

• Special Conference Pricing and Reduced Membership Dues for Students

• Women in Advanced Computing (WiAC) Summit and Networking Events

• Updating and Improving Our Digital Library

With your help, USENIX can continue to offer these programs—and expand our offerings—in support of the many
 communities within advanced computing that we are so happy to serve. Join us!

We extend our gratitude to everyone that has donated thus far, and to our USENIX and LISA SIG members; annual
 membership dues helped to allay a portion of the costs to establish our Open Access initiative.

www.usenix.org/annual-fund

