Data Processing with Pandas

DAVID BEAZLEY

David Beazley is an open source developer and author of the Python Essential Reference (4th Edition, Addison-Wesley, 2009). He is also known as the creator of Swig (http://www.swig.org) and Python lex-Yacc (http://www.dabeaz.com/ply.html). Beazley is based in Chicago, where he also teaches a variety of Python courses. dave@dabeaz.com

In most of my past work, I’ve always had a need to solve various sorts of data analysis problems. Prior to discovering Python, AWK and other assorted UNIX commands were my tools of choice. These days, I’ll mostly just code up a simple Python script (e.g., see the June 2012 login: article on using the collections module). Lately though, I’ve been watching the growth of the Pandas library with considerable interest.

Pandas, the Python Data Analysis Library, is the amazing brainchild of Wes McKinney (who is also the author of O’Reilly’s Python for Data Analysis). In short, Pandas might just change the way you work with data. Introducing all of Pandas in a short article is impossible here, but I thought I would give a few examples to motivate why you might want to look at it.

Preliminaries

To start using Pandas, you first need to make sure you’ve installed NumPy (http://numpy.scipy.org). If you’ve primarily been using Python for systems programming tasks, you may not have encountered NumPy; however, it gives Python a useful array object that serves as the cornerstone for most of Python’s science and engineering modules (including Pandas). Unlike lists, arrays can only consist of a homogeneous type (integers, floats, etc.). Operations involving arrays also tend to operate on all of the elements at once. Here is a short example that illustrates some differences between lists and arrays:

```python
>>> # Python lists
>>> c = [1,2,3,4]
>>> c * 3
[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
>>> c + [10,11,12,13]
[1, 2, 3, 4, 10, 11, 12, 13]
>>> import math
>>> [math.sqrt(x) for x in c]
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]
```

```python
>>> # numpy arrays
>>> import numpy
>>> d = numpy.array([1,2,3,4])
>>> d * 3
```

Data Processing with Pandas

DAVID BEAZLEY

David Beazley is an open source developer and author of the Python Essential Reference (4th Edition, Addison-Wesley, 2009). He is also known as the creator of Swig (http://www.swig.org) and Python lex-Yacc (http://www.dabeaz.com/ply.html). Beazley is based in Chicago, where he also teaches a variety of Python courses. dave@dabeaz.com

In most of my past work, I’ve always had a need to solve various sorts of data analysis problems. Prior to discovering Python, AWK and other assorted UNIX commands were my tools of choice. These days, I’ll mostly just code up a simple Python script (e.g., see the June 2012 login: article on using the collections module). Lately though, I’ve been watching the growth of the Pandas library with considerable interest.

Pandas, the Python Data Analysis Library, is the amazing brainchild of Wes McKinney (who is also the author of O’Reilly’s Python for Data Analysis). In short, Pandas might just change the way you work with data. Introducing all of Pandas in a short article is impossible here, but I thought I would give a few examples to motivate why you might want to look at it.

Preliminaries

To start using Pandas, you first need to make sure you’ve installed NumPy (http://numpy.scipy.org). If you’ve primarily been using Python for systems programming tasks, you may not have encountered NumPy; however, it gives Python a useful array object that serves as the cornerstone for most of Python’s science and engineering modules (including Pandas). Unlike lists, arrays can only consist of a homogeneous type (integers, floats, etc.). Operations involving arrays also tend to operate on all of the elements at once. Here is a short example that illustrates some differences between lists and arrays:

```python
>>> # Python lists
>>> c = [1,2,3,4]
>>> c * 3
[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
>>> c + [10,11,12,13]
[1, 2, 3, 4, 10, 11, 12, 13]
>>> import math
>>> [math.sqrt(x) for x in c]
[1.0, 1.4142135623730951, 1.7320508075688772, 2.0]
```

```python
>>> # numpy arrays
>>> import numpy
>>> d = numpy.array([1,2,3,4])
>>> d * 3
```
Array([3, 6, 9, 12])
>>> d + numpy.array([10,11,12,13])
array([11, 13, 15, 17])
>>> numpy.sqrt(d)
array([1. , 1.41421356, 1.73205081, 2.])
When reading data, Pandas creates what’s known as a DataFrame object. One way to view a DataFrame is as a collection of columns. In fact, you can easily extract specific columns or change the data:

```python
>>> addresses = potholes['STREET ADDRESS']
>>> addresses[0:5]
0 172 W COURT PL
1 1413 W 17TH ST
2 11800 S VINCENNES AVE
3 3499 S KEDZIE AVE
4 1930 W CULLERTON ST
Name: STREET ADDRESS
```

And there is so much more that you can do. For example, if you wanted to find the five most reported addresses for potholes, you could use this one-line statement:

```python
>>> potholes['STREET ADDRESS'].value_counts()[0:5]
4700 S LAKE PARK AVE 108
1600 N ELSTON AVE 84
7100 S PULASKI RD 80
1000 N LAKE SHORE DR 80
8300 S VINCENNES AVE 73
```

Let’s say you want to find all of the unique values for a column. Here’s how you do that:

```python
>>> # Get possible values for the 'STATUS' field
>>> potholes['STATUS'].unique()
array(['Completed - Dup', 'Completed', 'Open - Dup', 'Open'], dtype=object)
```
Here is an example of filtering the data based on values for one of the columns:

```python
>>> fixed = potholes[potholes['STATUS'] == 'Completed']
>>> fixed
<class 'pandas.core.frame.DataFrame'>
Int64Index: 94490 entries, 1 to 116717
Data columns:
CREATION DATE 94490 non-null values
STATUS 94490 non-null values
...
```

In this example, the relation `potholes['STATUS'] == ' Completed'` is computed across all 116,000 records at once and creates an array of Booleans. By using that array as an index into `potholes`, we get only those records that matched as True. It’s kind of a neat trick.

In addition to street addresses, the pothole data also includes the total number of potholes fixed at each address. Let’s try to refine our analysis so that it takes this into account. Specifically, we’d like to sum up the total number of potholes fixed at each address and base our report on that. Here’s how to do it.

First, let’s just pick out data on street addresses and number of potholes:

```python
>>> addr_and_holes = fixed[['STREET ADDRESS',
...                         'NUMBER OF POTHOLES FILLED ON BLOCK']]
>>> addr_and_holes
<class 'pandas.core.frame.DataFrame'>
Int64Index: 94490 entries, 1 to 116717
Data columns:
STREET ADDRESS                                94489 non-null values
NUMBER OF POTHOLES FILLED ON BLOCK    93558 non-null values
dtypes: float64(1), object(1)
```

Next, let’s drop missing values in the data:

```python
>>> addr_and_holes = addr_and_holes.dropna()
>>> addr_and_holes
<class 'pandas.core.frame.DataFrame'>
Int64Index: 93558 entries, 13 to 116717
Data columns:
STREET ADDRESS                                93558 non-null values
NUMBER OF POTHOLES FILLED ON BLOCK    93558 non-null values
dtypes: float64(1), object(1)
```

Let’s group the data by street address and calculate totals:

```python
>>> addr_and_totals = addr_and_holes.groupby('STREET ADDRESS').sum()
>>> addr_and_totals[:5]
NUMBER OF POTHOLES FILLED ON BLOCK
STREET ADDRESS
1 E 100TH PL     9
1 E 110TH PL     20
1 E 111TH ST     10
```
Finally, let’s sort the results:

```python
gdf = addr_and_totals.sort('NUMBER OF POTHOLES FILLED ON BLOCK')
gdf[-5:]
```

<table>
<thead>
<tr>
<th>STREET ADDRESS</th>
<th>NUMBER OF POTHOLES FILLED ON BLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>6300 N RAVENSWOOD AVE</td>
<td>461</td>
</tr>
<tr>
<td>8200 S MARYLAND AVE</td>
<td>498</td>
</tr>
<tr>
<td>3900 S ASHLAND AVE</td>
<td>575</td>
</tr>
<tr>
<td>12900 S AVENUE O</td>
<td>577</td>
</tr>
<tr>
<td>5600 S WOOD ST</td>
<td>664</td>
</tr>
</tbody>
</table>

And there you have it—the five worst blocks on which to ride your road bike. It’s left as an exercise to the reader to take this data and extend it to find the worst overall street on which to ride your bike (by my calculation it’s Ashland Avenue, which is probably of no surprise to Chicago residents).

A File System Example

Let’s try an example involving a file system. Define the following function that collects information about files into a list of dictionaries:

```python
import os

def summarize_files(topdir):
    filedata = []
    for path, dirs, files in os.walk(topdir):
        for name in files:
            fullname = os.path.join(path, name)
            if os.path.exists(fullname):
                data = {
                    'path': path,
                    'filename': name,
                    'size': os.path.getsize(fullname),
                    'ext': os.path.splitext(name)[1],
                    'mtime': os.path.getmtime(fullname)
                }
                filedata.append(data)
    return filedata
```

Now, let’s hook it up to Pandas and use it to analyze the Python source tree:

```python
>>> import pandas
>>> filedata = pandas.DataFrame(summarize_files("Python-3.3.0rc1"))
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4207 entries, 0 to 4206
Data columns:
  ext: 4207 non-null values
Let’s see how many files of different types there are:

```python
>>> filedata['ext'].value_counts()[:5]
.py 1618
.c 479
.rst 429
.h 263
.o 236
```

As a final example, let’s generate a few statistics and use matplotlib to make a histogram. Here, we’ll look at the sizes of `.py` files:

```python
>>> pyfiles = filedata[filedata['ext'] == '.py']
>>> pyfiles['size'].max()
385802
>>> pyfiles['size'].mean()
12964.483930778739
>>> pyfiles['size'].std()
23799.089183395961
```

If it works, you’ll end up with a plot that looks like Figure 1.

That’s pretty neat—and it didn’t involve much code.

**Final Words and In Memoriam**

If you’re faced with the task of analyzing data, Pandas is definitely worth a look. Although all of the problems shown in this example could have been solved by short Python scripts, Pandas makes it even easier and more succinct.

Finally, in the last example, matplotlib (http://matplotlib.sourceforge.net) was used to make a plot. matplotlib is one of the most popular extensions to Python that is in widespread use by scientists and engineers. Sadly, John Hunter, the creator of matplotlib, passed away suddenly this past August from complications of cancer treatment, leaving behind his wife and three daughters. If you’ve benefited from the use of matplotlib, a memorial fund has been established. More information can be found at http://numfocus.org/johnhunter/.