
Opinion

2    ;login:  Vol. 37, No. 5

Rik is the editor of ;login:.
rik@usenix.org

As a certified armchair researcher, I settled into my armchair in a dark room,
watching distant flashes of lightning over the desert landscape surrounding me.
The scattered storms brought to mind the problem of weather forecasting, or
rather, the common failings of accurate forecasts beyond the next several days.

Like other High Performance Computing (HPC) problems, weather forecasting
requires enormous computational resources. The world is a big place, after all, and
the weather is notoriously fickle. Other HPC problems, such as protein folding and
fluid dynamics, suffer from similar issues; duplicating nature with a set of proces-
sors is an approximation, at best.

And to make matters worse, the approximations we have today must be performed
on von Neumann machines.

Fish

Instead of imagining a weather system, as I sit in my armchair I imagine a school
of fish. I love undersea videos of large schools of fish, light flashing off their bodies
as they move in coordinated synchrony to ward off predators. These fish are not
connected by networks, but use simple biological mechanisms that allow them to
function as a unit—something at which our computers today are not so good.

Shifting focus a bit, I imagine dividing software into three big buckets: control,
stream processing, and cells. Control software makes the decisions, such as start-
ing other processing, and is characterized by many tests and branches. I visualize
it as a tangle of threads.

Stream processing is also familiar. We now have powerful GPUs that use pipelines
of specialized processors to transform a stream of data. We see stream processing
in simple things, such as playing a movie or an audio recording, as well as in big
data projects, where clusters of servers filter through data distributed throughout
the cluster to produce the reduced result. For this, I see streams of data, with pro-
cessors located along the stream like beads on a chain.

But weather forecasting, fluid dynamics, protein modeling, and the modeling of
nuclear explosions do not fit into either the control or stream paradigms. In my
mind, they best match cellular automata, where the state of adjacent cells affects
the transition of a cell to its future state.

In weather modeling, the cells are enormous—on the scale of tens of kilometers.
Worse still, the cells are three-dimensional, not at all like the classic 2D cellular

Musings
R i k F a r r o w

	 ;login:  OCTOBER 2012   Musings    3

automata. And, finally, weather is affected by radiation, which will have effects not
just from adjacent cells, but from the edges of the model—the surface of the earth
and space itself.

As if weather is not hard enough, imagine dealing with fluid dynamics, such as
modeling the turbulent flow of air across the wing of an airfoil. Here the cells are
not boxes sitting on geography, but particles flowing and interacting. What each
particle does affects its neighbors, and their neighbors, and so on.

Our computers are designed for control and stream processing, and do quite
well at this. HPC needs to work with cells or flows or interacting particles, and
include non-local effects such as radiation. Ideally, our HPC systems would work
like a school of fish, rearranging themselves into the most efficient formation.
Instead, we have to work with systems attached to racks, wired into networks,
and arranged as a fixed grid of processors and memory. No wonder this is a hard
problem to solve.

The Lineup
We open this issue with an article based on a position paper presented during
HotPar ’12. Rob Knauerhase, Romain Cledat, Justin Teller, and Mark Handley
describe future directions for HPC systems, in particular, replacing the operat-
ing system with something much lighter weight. When one considers that super-
computers have tens of thousands of cores, running a full-fledged OS like Linux
on each core would be a tremendous waste of resources—and systems such as
Blue Gene already run much smaller execution engines. Knauerhase et al. explain
where Intel plans to go—and is already moving—with their new Xeon Phi [1, 2] line
of coprocessors.

Olivier Bonaventure, Costin Raiciu, and Mark Handley report on MPTCP, an
extension to TCP that supports multiple paths without changes to client or server
applications. MPTCP will be useful in datacenters, but also for mobile devices,
because MPTCP is designed to just work—just like the IP stack we have grown
accustomed to using. One huge issue in the development of MPTCP was dealing
with middleboxes, which may modify header information. MPTCP neatly works
around these issues, in addition to falling back transparently when a link stops
working.

Kamau Wangũhũ describes VXLAN, a method for extending broadcast networks
across routed networks. Virtual machines that work together may expect to be
located on the same broadcast (Layer 2) network, when in reality, they may be
placed wherever it is currently convenient to instantiate them. VXLAN provides
transparent tunneling, so that VM instances on other networks appear to be local
from the point of view of the VM.

Amandeep Khurana has written an introduction to HBase, a database that runs
over Hadoop. Using HBase requires that people accustomed to using SQL data-
bases rethink how they design their schema, and Khurana clearly provides sugges-
tions for using HBase efficiently.

Stuart Kendrick decided that he should publish the results of his months-long
study of 10 years of outages. Kendrick has the fortune of having a fairly complete
record of system and software failures, and he thought that his current position
demanded that he analyze this data properly. The results may not surprise you; for
example, software issues lead to the most outages. If you are responsible for main-

4    ;login:  Vol. 37, No. 5

taining many systems plus SLAs simultaneously, I suggest reading Kendrick’s
analysis, which does contain information useful for starting your own analysis.

Jacob Farmer managed to squeeze in an interview about a new project he and his
company are working on with Harvard Medical School. The school decided to work
with Cambridge Technologies to see whether they could do a better job of attaching
meaning to the files that they were storing or archiving, and Farmer explains what
this project means to anyone interested in making sense of the vast amounts of
stored data we deal with these days.

Charles Polisher shared his and his coworkers’ experience with a series of mys-
terious power supply failures in a datacenter. No clear cause ever emerged, but
Polisher does describe the fixes that may have ended their problems.

David Blank-Edelman takes us down a different path this time. In his August
’12 column, David described a tool that permits manipulating XML and HTML-
structured data using paths to access that data. This time, David explores Augeas,
a tool designed specifically for manipulating configuration files using paths. Like
the XML Path Language, Augeas can make managing configuration files via paths
much simpler than the standard pattern or field matching approaches.

David Beazley leads us down simultaneous paths in parallel by explaining how
to use the multiprocessing library in Python. David first provides an example of
how threads work, then shows how the multiprocessing library actually allows a
Python program to use all of the cores, instead of the single core permitted by the
thread library in Python. David ends his column with a simple RPC server.

Dave Josephsen exhibits his usual enthusiasm, this time for a new library called
0MQ. 0MQ abstracts away a lot of the issues with writing multicast, publish-sub-
scribe, clients, and servers. Dave begins with a simple example of a server written
using 0MQ, which actually is simpler than writing the same server without this
library.

Inspired by Charles Polisher’s description of failed power supplies, Robert Ferrell
takes us on many more paths toward failures. For Robert, power supply failures are
not sufficient, and he entertains us with other related sources of outages.

Elizabeth Zwicky continues down the path that she has been following toward
more effective management, starting with two books full of ideas for dealing more
effectively with team members. Then she takes a look at a book that provides the
real story of the Macintosh, one without a focus on Steve Jobs, but on what actually
went on in Silicon Valley garages. She then takes a hard look at a Frederick Brooks
book and finishes up with a book on IPv6.

Mark Lamourine reviews two books about Coffeescript. I now have a really good
idea of exactly what Coffeescript is about, and whether either or both of these
books would be suitable support for learning this JavaScript replacement.

Evan Teran rounds out our reviews section with an in-depth review of Inside Win-
dows Debugging. Debuggers are critical tools for developers and security geeks like
Teran, who says that this book demystifies how Microsoft debuggers work.

Finally, we have summaries from the 2012 USENIX Annual Technical Confer-
ence. As always, many of the sessions at USENIX conferences are recorded, and
these videos and audio recordings appear on the Web as soon as they are processed.
We plan to start posting summaries online after they have been edited, which

	 ;login:  OCTOBER 2012   Musings    5

means you can read summaries soon after an event instead of waiting until they
appear in ;login:. Summaries from the Hot Topics in Parallelism workshop and
Federated Conferences Week are available online now.

The storms I’ve been watching have moved off to the north. From past experi-
ence—and using online weather radar—I know I can see lightning flashes further
than 40 miles away. I take a deep breath as I settle deeper into my armchair.

I try to imagine a supercomputer as fluid as a school of fish, and I fail. All I can see
are the racks of servers and bundles of hardwired network cables that make up the
inside of today’s HPC supercomputers. Even as our technology advances the von
Neumann designs based on Turing’s mathematics, the problems technology needs
to solve require something new, something more fluid. Something I am failing to
imagine.

References

[1] Knight’s Corner (Xeon Phi) uses embedded Linux: http://software.intel.com/
en-us/blogs/2012/06/05/knights-corner-open-source-software-stack/.

[2] Intel’s Xeon Phi many-core coprocessor: http://www.anandtech.com/show/
6017/intel-announces-xeon-phi-family-of-coprocessors-mic-goes-retail/.

