
	62    ;login:  VOL. 37, NO. 2

During the riots in London (the most recent ones), a friend pointed out that the
top-selling items at Amazon.co.uk (as measured by their own “movers and shak-
ers” page) were baseball bats. Before that, if you were to give me a data dump of all
of Amazon’s sales data for the past whenever, I confess I’d probably be at a loss for
what to do with it. I would know that the data set held fascinating economic and
sociological truths, but I wouldn’t know the questions to ask to tease them out off
the top of my head.

Given, however, the baseball bat tidbit and the accompanying revelation that the
second highest selling item was baseballs, my head virtually spins with conjecture.
I imagine my own city aflame outside my hastily boarded up windows. The shouts
of looters and the screams of car-alarms penetrate my makeshift barricade while
I click the Next-Day Air option on my order of a Louisville Slugger. My heart goes
out to those people, truly, but what were they thinking? What UPS-man in his
right mind drives a delivery truck through hordes of looters? Were they really so
proper that they felt the need to buy some balls to keep up appearances while their
city burnt down around them? Were the recipients of these orders even in London?
Perhaps it was the surrounding burgs making preparations just in case?

At any rate, that little bit of knowledge makes me look at the larger data set with
new eyes. It invites me to explore possibilities that hadn’t occurred to me before,
and, for me at least, that’s the way it goes with data analysis. My imagination needs
a bit of a kick in the shins to get it going. In the example above, we took our inspira-
tion from the data itself, but it’s also possible that a better understanding of, and
easier access to, a few analysis techniques could inspire us to look at our data in
new ways. Herein lies what I feel is the most fundamental difference between
Graphite and RRDtool. The latter provides the means to perform whatever math
we wish on our data before we graph it, while the former gives us a bunch of stati-
cally defined analysis functions that we may apply as we graph it.

Normally, I would argue for RRDtool’s flexibility, but, in practice, Graphite’s pre-
defined functions do a much better job of kicking me in the shins and arousing my
curiosity. In this, the last article in my series on Graphite, I’d like to share a few of
these analysis functions with you, and hopefully show you how Graphite has me
thinking differently about my data.

We’ll start with the exception to the rule, the one area where Graphite is argu-
ably more flexible than RRDtool: derivatives and integrals. As you probably know,
RRDtool wants you to categorize your data into one of several types, including

iVoyeur
Changing the Game, Part 3

D A V E J O S E P H S E N

Dave Josephsen is the

author of Building a

Monitoring Infrastructure

with Nagios (Prentice

Hall PTR, 2007) and is senior systems

engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server

farms. He won LISA ‘04’s Best Paper award for

his co-authored work on spam mitigation, and

he donates his spare time to the SourceMage

GNU Linux Project.

dave-usenix@skeptech.org

	 ;login:  APRIL 2012   iVoyeur    63

“GAUGE” and “COUNTER.” This is so that RRDtool can make some underlying
assumptions about the data you’re storing. For example, the reason RRDtool gives
you a “COUNTER” data type is so it can automatically compute the derivative from
counter data. So if you have a metric such as the number of packets passed through
an interface, RRDtool will automatically take the derivative of this counter and
provide you packets per second.

In Graphite, you’ll recall that all data is stored the same way RRDtool would store a
“GAUGE” data type, which is to say, Graphite just stores the raw data. This means
that if you want to compute packets per second from a counter metric, you need to
apply the “derive()” function to the data when you graph it. If this seems counter-
intuitive, well, it is at first. At least I thought so before I became familiar with the
rest of the functions, but first things first.

Graphite functions may be applied in the Graphite GUI via the “Graph Data” button
in the graph composer, but now that I’ve been using Graphite for a while, I find it
more expedient to work with the URLs directly. This is both because I type better
than I click, and because the function names in the documentation don’t exactly
match those in the GUI, so one avoids the need to hunt around in menus by simply
typing them into the URLs. To do this, I first get some data into the graph in the
graph composer, then right-click the graph itself and select “copy link location,”
and then I simply paste the URL into a new browser tab.

Functions apply in a C-like manner, as you would expect, and most of them accept
multiple metrics and even wildcards in lieu of lists. For example, I can apply the
derive function to “some.counter.data” like so:

&target=derive(some.counter.data)

Figure 1: The derivative of a router’s byte counter

	64    ;login:  VOL. 37, NO. 2

Figure 2: Raw byte count values from two routers

This function yields rate data as depicted in Figure 1, but that brings me to my first
kick in the shins: namely, that sometimes looking at raw counter data is interest-
ing. This wouldn’t have occurred to me using RRDtool, but what if we compare
the raw byte counters of two different routers, as seen in Figure 2? This could be
useful capacity planning info, but it’s not a fair comparison, because the routers have
different total values, so one router will always appear to be growing at a smaller rate
than the other. That’s okay, Graphite provides us a “secondYAxis()” function, which
easily allows us to draw one of these two data sets on its own Y-axis. So by graphing:

&target=router1.bytes&target=secondYAxis(router2.bytes)

we can get a clear picture of comparative rate of growth of the byte counters for
these two routers, as seen in Figure 3. There’s also an “integral()” function, which
allows you to take GAUGE-based data sources and get counter-style data. If, for
example you had a graph of widget sales per minute, you could apply the integral
function to graph total sales for a given time interval.

Figure 3: Raw byte counts from two routers compared with independent Y-axis

	 ;login:  APRIL 2012   iVoyeur   65

Now, if you’re adept at RRDtool, take a moment and think about what it would have
taken to “RRDtool graph” Figure 3, especially if you had been storing your counter
data as type “COUNTER”, as you should. It’s probably possible, but I admit I don’t
know how to do it off the top of my head, and the idea of puzzling it out in Reverse
Polish Notation somehow stops short of sounding appealing. Even if I did tease it
out, I wouldn’t be likely to apply the technique to other data sets for the benefit of
my own curiosity, and the various RRDtool-based frontends out there wouldn’t be
much help to me in that endeavor. Graphite’s functions invite me to visualize the
data in new ways by virtue of their existence and accessibility. That’s probably the
biggest way Graphite has been a game-changer for me.

The functions themselves are fully documented at [1], and I can’t cover all of them
here, but let’s take a look at some of my favorites, starting with “summarize().”
This function allows you to re-compute the interval for a given set of time series
data. So given a metric such as the number of users registering for an online ser-
vice as depicted in Figure 4, we can imagine that the marketing team has a goal to
maintain X registrations per hour and would like to display this data on a kiosk in
the hallway, but they’ll want it graphed as “registrations per hour” to reflect their
goal. We can compute this graph, depicted in Figure 5, for them with:

&target=summarize(user.registrations,”1h”)

Figure 4: User registrations over time

	66    ;login:  VOL. 37, NO. 2

Figure 5: User registrations summarized hourly

To make their progress more obvious, we could add a horizontal line (constant)
equal to their goal (Figure 6) with the “threshold()” function like so:

&target=summarize(user.registrations,”1h”)&target=threshold(400,”Goal”)

Figure 6: User registrations summarized hourly with a constant goal value

Functions are nestable, as in C, so we could add the data from last month to the
graph by nesting the summarized target inside a “timeShift()” function. This
would give the marketers some historical registration data from last month for
context, while still maintaining a two-week period on the X-axis. This graph,
drawn with the targets listed below, is depicted in Figure 7.

&target=summarize(user.registrations,”1h”)&target=timeShift(summarize(user.

registrations,”1h”),”30d”)&target=threshold(400,”Goal”)

	 ;login:  APRIL 2012   iVoyeur    67

Figure 7: User registrations summarized hourly with a constant goal value and historical data

I really like the timeshift function. It’s such an easy way to gain some context for
almost any metric, and since I discovered it, every metric I graph seems to beg the
question, “What was it doing last week at this time?” It’s because of functions like
this that Graphite feels more like an introspective tool and, by comparison, RRD-
tool seems inflexible or perhaps even created for a different problem domain.

Various functions exist for combining multiple metrics into a single line: these are
“sumSeries(),” which creates a single line from multiple metrics by adding them
together, “averageSeries(),” which averages multiple metrics into a single metric,
and “minSeries()” and “maxSeries(),” which plot only the minimum or maximum
value data points in the series. All of these functions support wildcards in the data-
source field. For example:

&target=averageSeries(dc4.web.*.cpu)

plots a single line with the average CPU utilization of every Web server in dc4.
Combinatorial functions are great for summarizing clusters or even datacenters.
I find myself combining multiple averageSeries() of different metric types (CPU
and disk, for example) using “secondAxis().” In this way I can get multiple metrics
across entire datacenters on the same graph in a really usable way. Other functions
exist for filtering individual metrics out of large lists. For example:

&target=highestCurrent(dc4.Web.*.cpu,5)

plots the CPU utilization of only the five currently most utilized Web servers in
DC4. Combining these:

&target=averageSeries(highestCurrent(dc4.Web.*.cpu,5))

plots the average CPU utilization of the five currently most utilized Web servers in
DC4. These are awesome for dashboards where you’re just wanting to show things
that are misbehaving, or aberrant behavior in general. I’m sure you get the idea by
now. Although too numerous to offer a complete list here, filters include highest
and lowest max, average, and current; filters which plot metrics that fall above or
below static thresholds as measured by max, min, and average; and metrics that
are most deviant from the rest of the series.

	68    ;login:  VOL. 37, NO. 2

There are also a few advanced functions that bear mentioning. Included are func-
tions for plotting the Holt-Winters Forecast, Confidence Bands (error bars), and
Deviation. Holt-Winters is a statistical forecasting technique based on exponential
smoothing. I wrote an article [2] about its inclusion in RRDtool, and I stand by
what I said in that article: it’s the coolest code that nobody ever uses.

I can’t go into great detail here, but suffice it to say that the technique does a
good job of predicting future data points based on existing data, even taking into
account long-term and seasonal patterns (such as spikes or slow periods caused
by human behavior on weekends and holidays). For many metrics, and especially
system-based ones, problems can be detected by measuring their deviation from
the “expected” value given to us by Holt-Winters, and Graphite makes this more
accessible than it’s ever been before.

Using Holt-Winters, I could create a dashboard that told us not only the five most
utilized Web servers, but also their deviation, with:

&target=highestCurrent(dc4.Web.*.cpu,5)&target=holtWintersAberration(highest

Current(dc4.Web.*.cpu,5))

Figure 8: CPU utilization paired with Holt-Winters aberration

This graph might look something like Figure 8, where, while the lines on top would
tell us what the CPU values were, the bottommost line would give us an indication
of how “problematic” or at least how “unexpected” those values were.

There’s a lot more to say here, but I’m afraid I’m at my word limit (to say nothing of
having probably exhausted my Figures budget for all of 2012 (sorry, Jane-Ellen)).
If my other articles on Graphite haven’t convinced you to check out this truly
excellent tool, I hope this last one has. I’m sure I’ll revisit Graphite as it continues
to mature, but I have so many excellent tools in the pipeline that I really must move
on. Next time, expect the first in a new series of articles on a Nagios plugin that I’m
really excited about called check_mk.

Take it easy.

	 ;login:  APRIL 2012   iVoyeur    69

References

[1] Graphite documentation—Functions: http://readthedocs.org/docs/graphite/en/
latest/functions.html.

[2] Dave Josephsen, “iVoyeur: Hold the Pixels,” ;login:, vol. 33, no. 4, USENIX, 2008:
https://www.usenix.org/publications/login/august-2008-volume-33-number-4/
ivoyeur.

USENIX Member Benefits

Members of the USENIX Association receive the following
benefits:

Free subscription to ;login:, the Association’s magazine,
published six times a year, featuring technical articles,
system administration articles, tips and techniques, practi-
cal columns on such topics as security, Perl, networks, and
operating systems, book reviews, and reports of sessions at
USENIX conferences.

Access to ;login: online from October 1997 to this month:
https://www.usenix.org/publications/login/

Discounts on registration fees for all USENIX confer-
ences.

Special discounts on a variety of products, books, software,
and periodicals: https://www.usenix.org/member-services/
discounts

Contributing to USENIX Good Works projects such as
open access for papers, videos, and podcasts; student grants
and scholarships; USACO; awards recognizing achievement
in our community; and others: https://www.usenix.org/good-
works-program

The right to vote on matters affecting the Association, its
bylaws, and election of its directors and officers.

For more information regarding membership or benefits,
please see https://www.usenix.org/membership-services or
contact office@usenix.org, 510-528-8649.

