
	46    ;login:  VOL. 37, NO. 2

At LISA ’11 in Boston, as I was sitting in a talk [1] on GPFS by Veera Deenadhaya-
lan of IBM, I saw something that I instinctively knew was incorrect. It wasn’t
anything fundamental to his talk. To the contrary, the work that IBM is doing on
GPFS is quite impressive and one of the reasons we had them come to give this
talk. There are two main, salutary features of upcoming GPFS versions coming
out of the IBM Almaden Research Center. The first is the de-clustering of RAID
stripes from full disks, which, to be brief, allows very fast rebuilding of stripes of
data across 100,000+ disk systems, where the expectation is that a RAID rebuild
will be happening every eight hours or so. The second, and the focus of my article
here, is the integration of superior integrity checks built into file systems.

This is nothing new, right? ZFS has been doing this for years. This is definitely
worthwhile work, and I’m extremely glad to see this being integrated into other
file systems, natively. The thing that struck me was about 33 minutes into the talk
on slide 26. It was a reference to the paper “Evaluating the Impact of Undetected
Disk Errors in RAID Systems” [2] published in 2009 in the IEEE International
Conference on Dependable Systems. This publication clearly nailed the problem,
but models indicated that a 1000-disk system would experience an undetected cor-
ruption every five years. This is where my mind jumped the rails a little bit, but not
for the reasons you might think. I have practical experience that shows that this is
extremely optimistic, and my own recorded failure rate is much higher than this! I
mentioned this to Veera and he requested that I publish these results; I agreed.

The Problem

But first, it may be necessary to take a step back. What is an undetected error,
how does one catch it, and why is this a problem? You are probably more familiar
with the lengths to which most vendors will go to tell you how safe the data is that
they are writing to disk. They will quote MTBF or MTTDL [3] numbers, call your
attention to scrubbers for bad data, etc. But, from a data integrity perspective, the
question is this: how do you know that the data that you are reading back is what
you wrote? That’s the crux of the matter. Verifying correct writes at the time of the
write is obviously important, but equally so, or perhaps even more important in
some cases, is ensuring that you are reading back the correct data.

Disks Lie

Do you trust that your disks are returning to you what you wrote? When you read
back a file, there are a panoply of things intermediating between you and your data.
First, you have to get the data off the disk. Disks are incredibly complicated bits of

Data Integrity
Finding Truth in a World of Guesses and Lies

D O U G H U G H E S

Doug Hughes is the manager

for the infrastructure team

at D. E. Shaw Research, LLC,

in Manhattan. He is a past

LOPSA board member and was the LISA ’11

conference co-chair. Doug fell into system

administration accidentally, after acquiring a

BE in Computer Engineering, and decided that

it suited him.

doug@will.to

	 ;login:  APRIL 2012   Data Integrity    47

near black-magic. It’s amazing that they even work at all. They have little electro-
magnetic heads floating on air cushion mere microns above a rapidly spinning sur-
face of mirror-polished rust—a 7200 RPM 3.59 disk is moving at about 100 km/h at
the outer edge. They have to be at exactly the right place at the right time to read off
little chunks of data that are probabilistically encoded and decoded via ultra-fine
magnetic fields at multiple depths using quantum effects [4]. The controller col-
lects all of this analog data, analyzes it on the fly, accounts for surface expansion
and contraction because of thermal effects, aligns the heads precisely, and uses
complex error correction codes to reconstruct the data and turn it into streams of
0’s and 1’s. What could possibly go wrong!? When your disks lie to you, and they
probably have already, do you know?

There are many things that could happen. You could write the data but, because
of head alignment or a firmware issue, the data that you wrote might turn into
a big chunk of 0’s. This is one of the reasons that GPFS writes the data and the
checksum to totally different disks. If the data and checksum were written to the
same place, and these blocks erroneously became 0’s, when you read it back the
checksum would match! The checksum or parity would be correct as far as what is
on the disk, but it would be wrong with respect to what you intended to be recorded
(unless, of course, you are in the habit of storing 0’s).

Another possibility is that the magnetic field degrades to such a point that the
algorithms used to reconstruct the data guess incorrectly. After all, the retrieved
data is an evaluation based upon mathematical best guesses based upon congruent
magnetic fields. Add to this the possibility of firmware bugs and you’ve got a lot of
potential for something to happen.

But disks are not the only ant in the colony. Connecting the disk controller to the
rest of the system is a cable, which connects to a board with integrated circuits,
which passes it over a bus, which passes the data through memory (usually) on
its way through several levels of cache through the CPU to the operating system,
which has a driver for the disk and a file system to aggregate multiple disks and
which uses its own memory and usually passes through the CPU/memory systems
several times on its way to a user program, which usually resides on multiple sys-
tems (whew). Sometimes there is also a RAID controller card with an ASIC, FPGA,
or CPU involved. It just so happens, out of all of these, the disk is complicated and
techno-magical enough that it is the most frequent source of errors.

What about client machines over the network? Some file systems, such as GPFS,
include network clients natively as an option. Others use the more common NFS
or AFS for remote access. These are beyond the scope of this article, for various
reasons.

How ZFS helps

In the remainder of this article, I’m going to illustrate the problem using ZFS. ZFS
has the advantage of telling you about prevarication up to and through the file
system. ZFS verifies the integrity of everything that it touches, including the CPU,
memory, cables, down to the disks. Since ZFS reports these problems in the form of
easily accessible checksum errors, I can easily share them with you. ZFS is freely
available. ZFS uses very strong checksums and verifies every single checksum on
read, so you know when there is a phantom flip in any subsystem. It may not know
exactly where the flip occurred. That would be hard. But it does associate the error
with the disk holding that block, even though it may not be the disk that is at fault.
We’ll get to that in a little bit.

	48    ;login:  VOL. 37, NO. 2

But, you ask, if ZFS detects it, how can it be undetected? It is because the disk
(which I’ll use as shorthand for all of the various components connecting the
disk to the file system) did not detect that it was bad. It thinks that the data that
it is returning is perfectly fine. This is where “undetected” comes from. It is the
hardware’s inability to realize that the equivalent of mischievous gremlins have
been hopping through the data fields kicking over the bit grains without trigger-
ing any errors. This last part is important. There may be no other error! The head
is fine, the disk platters may be totally fine. There are no timeouts, no bad blocks,
etc. These physical media errors have been around for a very long time and systems
already know how to deal with these fairly well. (Yet, somehow the exact failure
states of disks, firmware issues, bus timeouts, and other ephemera still manage to
torpedo us even after all of these years.)

I have been able to collect checksum failure data on a population of about 1000
disks over the course of a couple of years, and hopefully you will gain some appre-
ciation that the scope of the problem is worse than the IBM people thought when
they designed GPFS. Serendipitously, my population of ~1000 disks matches the
prediction pool from the research paper mentioned earlier. A good detection and
correction strategy is a shield from the bit gremlins.

Interpreting the Data

A normal zpool status output for the generic pool zpool1 made of a two-way redun-
dant stripe (raidz2 in ZFS parlance, equivalent to RAID6) looks like this:

zpool status zpool1

pool: zpool1

state: ONLINE

scrub: none requested

config:

NAME	 STATE	 READ	 WRITE	 CKSUM

zpool1	 ONLINE	 0	 0	 0

raidz2-0	 ONLINE	 0	 0	 0

c1t0d0s0	 ONLINE	 0	 0	 0

c2t0d0s0	 ONLINE	 0	 0	 0

c3t0d0s0	 ONLINE	 0	 0	 0

c5t7d0s0	 ONLINE	 0	 0	 0

c4t0d0s0	 ONLINE	 0	 0	 0

There are no read errors, no write errors, and no checksum errors. The checksum
error is conveniently stored in the last column for each disk in the pool and all of
the errors are tracked separately. Read and write errors are what you might expect:
head alignment, media error, controller failure, bus timeout, etc. Most of the read
and write errors are also visible to the system via normal error reporting: iostat
–E, /var/adm/messages, and the Solaris (if using that) event manager. Checksum
errors are as described earlier; the data read back from the disk does not match the
checksum that was stored when the data was written. This could be because the
checksum block is bad or because the data block is bad, but either way, ZFS flags
this as an error in the CKSUM column and automatically corrects the data, if pos-
sible, by reconstructing from parity. This is the part that makes ZFS so integral to
integrity. For the sake of space, I’ll be stripping the headers and other extraneous
rows for the following illustrations.

	 ;login:  APRIL 2012   Data Integrity    49

A P R 7, 2 0 1 1

c5t3d0	ONLINE	0	0	1

We had one checksum error on c5t3d0. Was it the disk? Was it an undetected ECC
flip? Was it a bit flip on a bus somewhere? We don’t really know. We wait for further
flips and keep the disk under observation. But, had we not had ZFS here, bad data
would have been returned to the program—that is certain.

O C T 8 , 2 0 1 0

 c0t6d0 ONLINE 0 0 2 5K resilvered

Two checksum errors! We can reasonably conclude that this is the disk, because
in a many-disk system other subsystem errors would be randomly spread around
to other disks. Not only that, but ZFS informs us that it has resilvered the bad data
to other disks for us. It’s very polite and helpful. Resilvering is the name for the
process by which all of the proper data is reconstructed onto the new disk to repair
the raidz2 stripe, an homage to repairing old glass mirrors.

S E P 2 , 2 0 1 0

raidz2	 DEGRADED	 0	 0	 0

	 c5t5d0s0	 ONLINE	 0	 0	 0

	 c0t6d0s0	 ONLINE	 0	 0	 0

	 spare	 DEGRADED	 0	 0	 1.21M

	 replacing	 DEGRADED	 0	 0	 0

	 c1t6d0s0/old	 FAULTED	 0	 0	 0	 corrupted data

	 c1t6d0	 ONLINE	 0	 0	 0	 2.95T resilvered

	 c4t7d0	 ONLINE	 0	 0	 0	 2.95T resilvered

	 c2t6d0s0	 ONLINE	 0	 0	 20

	 c3t6d0s0	 ONLINE	 0	 0	 20

We have a faulted disk, c1t6d0, that has been replaced, and a spare disk, c4t7d0,
that has been swapped in. c1t6d0s0/old represents the original failed disk. c1t6d0
and c4t7d0 are mirrored during the sparing process. We also see 20 checksum
errors each on c2t6d0s0 and c3t6d0s0. This is odd, particularly the exact equiva-
lence, and most likely correlated with transient controller issues when the original
disk failed, but ZFS was able to correct them on the fly. We chose to ignore these
errors and clear them to see if there were any other issues after the resilvering was
complete. There were none.

A P R 5 , 2 0 1 0

c7t0d0s0	 ONLINE	 0	 0	 0

 spare	 ONLINE	 220	 0	 212

 c7t1d0s0	 ONLINE	 25	 2	 212

 c7t7d0s0	 ONLINE	 0	 0	 432	 373G resilvered

That’s a lot of checksum errors, above (April 5, 2010)! But also read (25) and write
(2) errors. You can see that c7t1d0s0 was erroring all over the place and likely
had fairly severe media defects, perhaps a head dip, a particle of dust, or a random
manufacturing defect. c7t7d0s0 was hot-swapped into place and experienced 432
checksum errors while resilvering. /var/adm/messages was quite popular that
day. Fortunately, the errors were corrected on the fly. That would have been a data

	50    ;login:  VOL. 37, NO. 2

retrieval nightmare if they had been passed to the user program. It turns out that
this resilver got stuck and that the replacement disk had an issue. We replaced the
replacement and things worked much better.

D E C 1 5 , 2 0 1 1

c1t4d0	 ONLINE	 0	 0	 1

Another single corrected error while I write this article. This disk is under obser-
vation for further errors.

Conclusion

Of the events recorded above, we have five separate events in an 18-month period. I
think there are probably a few others that I was not able to find. Based upon rough
memory, it seems that we have a corrected checksum error every six months or so.
It would not be an over-stretch to call this 10 otherwise undetected bit flip events
in five years, if we aggregate the co-temporal events. However, if we use the raw num-
bers, the actual number of bit/block corruptions is much higher than this (432 in one
event alone)! The more conservative number is 10x the study projection, and I would
consider our overall disk reliability to have been pretty good over the last four years.

Hopefully, I haven’t frightened you too much with my tales of doom and gloom.
There are other ways that you can protect your data without ZFS, such as keep-
ing md5 checksums [5] on every file in the system. One thing that you should do
is demand that your storage vendor, who is implementing RAID6 [6], check all
reads and verify the parity on every block. This is relatively easy for them to do. It’s
slightly more overhead to read the blocks off the two parity disks and calculate the
codes, but it helps to verify the data is correct: ASICs and CPUs are fast and inex-
pensive. Parity isn’t as good as either the GPFS or ZFS checksum, which is verified
on the main CPU, but it’s better than nothing.

Many vendors will argue that they have strong guarantees that the data is written
correctly. This is not enough! However, in some cases (images and videos come to
mind), the bit flip phenomenon is inconsequential. Who cares if a pixel changes
color in a movie in a frame? You can make your own judgment about your tolerance
for data integrity and pick a solution that is appropriate for your enterprise.

References

[1] IBM talk on improvements to GPFS: http://www.youtube.com/watch?v
=2g5rx4gP6yU (or the LISA ’11 Web site).

[2] Rozier et al., “Evaluating the Impact of Undetected Disk Errors in RAID Sys-
tems”: https://www.perform.csl.illinois.edu/Papers/USAN_papers/09ROZ01.pdf.

[3] Richard Elling, “A Story of Two MTTDL Models”: http://blogs.oracle.com/
relling/entry/a_story_of_two_mttdl.

[4] http://en.wikipedia.org/wiki/Giant_magnetoresistance.

[5] Andrew Hume, “How’s Your OS These Days?” ;login:, vol. 30, no. 3, June 2005,
USENIX: https://www.usenix.org/publications/login/june-2005-volume-
30-number-3/hows-your-os-these-days.

[6] Robin Harris, “Why RAID5 Stops Working in 2009,” July 2007: http://www
.zdnet.com/blog/storage/why-raid-5-stops-working-in-2009/162.

