
	 ;login:  APRIL 2012       51

COLUMNS
In late January, Dick Tufeld, the voice talent behind The Robot in Lost in Space 
(and many other fine shows, Thundarr the Barbarian notwithstanding) died at 
age 85. I thought I would use the immortal phrase he spoke from that TV show as 
inspiration for this issue’s column and dedicate it to Tufeld’s memory. For this col-
umn, we’re going to look at a number of ways you can (and perhaps should) handle 
warnings and errors within your Perl programs.

When approaching a Perl question, my first inclination is to review what is avail-
able in the language directly and what ships with the distribution (i.e., is “in core”) 
before looking elsewhere for solutions. With that in mind, let’s start with the two 
built-in functions for signaling that an error has occurred:

warn()

die()

The former lets you print an error message while letting the program continue, and 
the latter does the same but under most circumstances (more on this later) termi-
nates the program run. Both take as an argument a list used for printing the error 
message. In most cases, that list contains a simple scalar, as in:

open my $FILE, ‘<’, ‘ookla’ or die “Couldn’t open the file ookla:$!”;

open my $FILE, ‘<’, ‘ookla’ or die “Couldn’t open the file ookla:$!\n”;

In both of these examples, I’ve used the common convention of including the $! 
variable in the error message. That variable gets set by Perl (to quote the docs) with 
“the current value of the C ‘errno’ variable, or in other words, if a system or library 
call fails, it sets this variable.” A slightly more subtle difference between the two 
examples is whether the error message passed to die() or warn() ends in a newline 
(“\n”). If it does, the message is printed as written. If it doesn’t, Perl appends the 
script name and line number where the error was encountered in your program to 
the message:

“Couldn’t open the file ookla: no such file at column.pl line 1920”

The Perl documentation for die() recommends adding “, stopped” to your message 
if you plan to leave off the newline. The error message then would be:

“Couldn’t open the file ookla: no such file, stopped at column.pl line 1920”

For most of your small-scale programming tasks, warn() and die() will do what 
you need. But when you start to write longer, more compartmentalized programs, 
you may find at least one of their standard properties may be less useful to you. Let 

Practical Perl Tools
Warning! Warning! Danger, Will Robinson!

D A V I D  N .  B L A N K - E D E L M A N

David N. Blank-Edelman is 

the director of technology at 

the Northeastern University 

College of Computer and 

Information Science and the author of the 

O’Reilly book Automating System Administration 

with Perl (the second edition of the Otter 

book), available at purveyors of fine dead 

trees everywhere. He has spent the past 24+ 

years as a system/network administrator in 

large multi-platform environments, including 

Brandeis University, Cambridge Technology 

Group, and the MIT Media Laboratory. He was 

the program chair of the LISA ’05 conference 

and one of the LISA ’06 Invited Talks co-chairs. 

David is honored to have been the recipient 

of the 2009 SAGE Outstanding Achievement 

Award and to serve on the USENIX Board of 

Directors beginning in June of 2010.  

dnb@ccs.neu.edu



	52      ;login:  VOL.  37,  NO.  2   

me show you a small example of what I mean. Let’s say I’m writing a program that 
consists of a module I wrote and a script that calls the module. Here’s the super 
simple module:

# module.pm

sub feel_better {

	 open my $DATA, ‘<’, ‘meditation_of_the_day’ or 

		  die “Can’t open my data file: $!”;

	 print while (<$DATA>);

	 close($DATA) or die “Unable to close data file:$!”;

}

1;

and an equally simple script to call it:

# caller.pl

use module;

feel_better();

Let’s run caller.pl without the data file module.pm needs. When we do so, it com-
plains thusly:

Can’t open my data file: No such file or directory at module.pm line 3.

If we were trying to debug this situation, we’d be a little stuck. We’d know that 
something in the module included by caller.pl reported an error, but we have  
no indication just where in caller.pl that module had been invoked. What if  
caller.pl was much longer and it called feel_better() in 20 different places in the 
code? How would we know which call failed? This is where the Carp module comes 
into play. Carp is a module shipped with Perl since version 5.00 was first released. 
It provides the following alternative error message routines:

carp()

croak()

confess()

cluck()

The first two, carp() and croak(), work just like warn() and die(), respectively, 
but instead of adding location information to the message when called without a 
newline based on where the error was encountered, they add it based on where the 
erroring code was called. So, if I change module.pm to read:

use Carp;

sub feel_better {

	 open my $DATA, ‘<’, ‘meditation_of_the_day’ or

		  croak “Can’t open my data file: $!”;

...

the error message it throws in the absence of a data file is:

Can’t open my data file: No such file or directory at module.pm line 4

	 main::feel_better() called at caller.pl line 5

Now we know not only where the error occurred, but also have an idea of just which 
code got us to that point. If we wanted even more information, let’s say because 



	 ;login:  APRIL 2012   Practical Perl Tools      53

we are trying to track down a situation where our program called code that called 
something else, we could use confess() and cluck(). The confess() call is like die()/
croak() except that it will produce a full stack trace as it shuffles off this mortal 
coil. cluck() does a similar thing but, like warn(), it lets the program continue to 
run.

Before we move on to the next section, I think it is worth mentioning a number 
of riffs on the Croak module that are available. Most of these take the idea in a 
direction that makes them even more useful. For example, there are a number of 
modules that redirect the output of carp() in some way. The first is one I’ve used 
to great effect in the past: CGI::Carp. CGI::Carp modifies the croak()/confess()/
carp() trio so that the Web server’s error logs will contain useful error messages 
from your script. It also has a special subroutine used like this:

use CGI::Carp qw(fatalsToBrowser);

die “Can’t open my data file: $!”;

This subroutine will send that error message to the browser of the person encoun-
tering the message instead of sending it to the error log. The fatalsToBrowser 
subroutine handles all the magic necessary to make sure HTTP headers are sent 
before the error message. There is a related subroutine available in CGI::Carp 
called warningsToBrowser which will let you send the output of any warn() calls 
to the browser as HTML comments (so they are not seen by the user, but are still 
available for perusal if desired). Both of these routines are really useful while 
debugging a Web application during the development process.

Another Carp redirection module that tries even harder to let you direct error 
messages in a useful fashion is Carp::Notify. Carp::Notify can actually email you 
the error messages. It will also let you designate certain global variables in your 
program as “storable,” meaning you want it to tell you the value of all of those vari-
ables when it is reporting an error. It is very helpful to have the runtime context of 
an error at hand when examining an error report.

If you like that last idea, you are really going to like Carp::REPL. Carp::REPL will 
modify your die() (and, optionally, warn()) calls so that when you call die(), instead 
of having the program quit, you will find yourself in an interactive Perl session. In 
this session you can poke and prod at the current state of the program to determine 
just where and how things went awry.

Death Be Proud?

Some people prefer a programming style where Perl functions and their connected 
system calls automatically throw errors if they fail. Instead of having to write:

open my $DATA, ‘<’, ‘meditation_of_the_day’ or

	 die “Can’t open my data file: $!”;

 ...

close($DATA) or die “Unable to close data file:$!”;

they prefer to write:

use autodie qw(open close);

open my $DATA, ‘<’, ‘meditation_of_the_day’;

 ...

close($DATA);



	54      ;login:  VOL.  37,  NO.  2   

safe in the notion that if open() or close() calls fail in some way, that will cause 
the program to stop. The plus of this approach is your code looks a little cleaner 
because it isn’t littered with tests for success/failure every step of the way. The 
autodie distribution also contains a Fatal module, which is how people pulled this 
trick off before autodie came along. It is worthwhile reading the docs for both mod-
ules so you will be aware of their individual gotchas.

This isn’t my preferred programming style, but there is one context where I do 
make use of a similar behavior: DBI programming. If you open a connection to a 
database as follows:

$dbh = DBI->connect(“�DBI:mysql:$database”, 

$username, $pw,{RaiseError => 1});

DBI will automatically call die() if the connect() or other subsequent DBI calls 
return an error. There’s an equivalent PrintError parameter that performs a 
warn() instead of a die() if that is more to your liking.

Death Be Not Proud

The flip side of the previous topic is that sometimes when your program encoun-
ters a “fatal” error, à la die(), you may have a different idea for what the program 
should do at that moment. If you are able to write code that can recover from an 
error like this, you need a way to catch the error and proceed from that point with 
your recovery. The usual way to do this is to wrap the operation that could poten-
tially fail in an eval()/eval{} block, as in this example from the DBI docs:

eval {

	 ...

	 $sth->execute();

	 ...

};

if ($@) {

	 # $sth->err and $DBI::err will be true if error was from DBI

	 warn $@; # print the error

}

If the execute() fails, the eval() will trap its failure and set $@ accordingly. Eval() 
also gets used like this when you want to test for a potentially fatal condition, e.g., if 
a module you plan to use isn’t available:

eval (‘use Mondok;’);

warn “Mondok module not available on this machine, skipping...” if ($@);

But eval() has a few issues (especially before Perl version 5.14, where a key one 
was addressed). These issues mostly surround $@, which can be cleared, clob-
bered, and generally messed with in ways that don’t necessarily make it a reliable 
semaphore. The easiest way to get around these problems is to use a module called 
Try::Tiny (whose docs contain a lovely litany of eval() complaints). Try::Tiny lets 
you write code of this form:

try { something } catch { the results } finally { perform some clean up }

Real Perl code using Try::Tiny would look like this:



	 ;login:  APRIL 2012   Practical Perl Tools      55

try { this_might_die() }

catch { warn “had a problem: $_”;}

finally { $error_count++ if ($@); }

If you like the try-catch-finally construct—perhaps you miss it from other pro-
gramming languages—you might want to check out Try::Tiny’s more powerful 
sibling, TryCatch. TryCatch has a larger list of dependencies, but it lets you do 
things like put “return()” in your catch blocks, something Try::Tiny by itself cannot 
do. To get that specific functionality from Try::Tiny you would need to add another 
module, Error::Return.

But Maybe What You Really Want Is an Object

We’re almost out of time for this column, but I wanted to at least mention one other 
approach to handling errors that you may wish to explore if you are writing larger 
and more extensive OOP-based programs. There’s a good argument to be made for 
passing around exception objects instead of the simple scalar error messages we’ve 
seen throughout this column. With an exception object, you can define a persistent 
interface for reporting back more detail on errors. This means that instead of hav-
ing to parse:

“Ran out of memory: 20k”

and then rewrite how you parse it when you decide the message should be:

“FATAL: memory exceeded max allocated by 20k”

you might want to use an object that can be queried for the error message and the 
amount of memory separately. Here’s some example code:

use Exception::Class ( ‘ColumnException’ => { fields => [‘memory_used’] } );

# we wrap this in an eval because throw() does a die() with the given object

eval {ColumnException->throw(

	 error	=> ‘FATAL: memory exceeded max allocated’,

	 memory_used => ‘20000’

)};

my $e	 = Exception::Class->caught(‘ColumnException’);

print $e->error,”: “;

print $e->memory_used,”\n”;

There are a few modules that help make creating exception objects pretty pain-
less. I’d recommend you look at Exception::Class (used in the previous example) 
or Exception::Base. If you decide to use the latter, you may want to check out 
Exception::Died, because it will automatically hook all of the die() calls in your 
program and cause them to return exception objects by default.

With that, we have to bring this column to an end. Thank you Mr. Tufeld for mak-
ing my TV-watching days richer with your voice. Take care, and I’ll see you next 
time.


