
J O N C R O W C R O F T , K E I R F R A S E R ,
S T E V E N H A N D , I A N P R A T T , A N D
A N D R E W W A R F I E L D

the inevitability
of Xen
Jon Crowcroft is the Marconi Professor of Networked
Systems in the Computer Laboratory of the
University of Cambridge. Prior to that he was profes-
sor of networked systems at UCL in the Computer
Science Department.

jon.crowcroft@cl.cam.ac.uk

Keir Fraser is an EPSRC academic fellow and lecturer
at the University of Cambridge. He completed his
Ph.D. in 2004 and now manages the Xen project.

keir.fraser@cl.cam.ac.uk

Steven Hand is a lecturer at the University of
Cambridge. His interests span the areas of operating
systems, networks, and security.

steven.hand@cl.cam.ac.uk

Ian Pratt is a senior lecturer at the University of
Cambridge. Irreverently dubbed the “XenMaster” by
his students, he has been the lead researcher on the
Xen project since its inception.

ian.pratt@cl.cam.ac.uk

Andrew Warfield is a Ph.D. student at the University
of Cambridge, working on the Xen project. He hopes
to finish his degree later this year.

andrew.warfield@cl.cam.ac.uk

X E N I S A V I R T U A L M A C H I N E M O N I T O R
(VMM) that we have developed at the
University of Cambridge over the past five
years. As a VMM, Xen allows a single physi-
cal computer to be partitioned into a set of
isolated virtual computers, each running its
own operating system and applications.
Xen has received a fair bit of attention
recently, and we have even spun out a com-
pany to support the commercial use of the
software.

This article isn’t just about our VMM, though. Xen is
the core part of a much larger vision for public com-
puting that has been behind a lot of our research in
the 21st century. In this article we articulate this
vision, the motivation behind Xen, and cover the
details of the current VMM, the context in which it
was conceived, and the future uses that we anticipate.

Xen: Master and Servant

Xen is the crucial component of the Xenoserver world
of public computing. The Internet provides connec-
tivity between all the networks in the world, and the
Web provides glue between all of the information
resources connected to these networks. In both of
those contexts, there is mutual benefit to participants:
Sometimes referred to as Metcalfe’s Law, the value of
N nodes joining in a network is N2, which usually off-
sets the risks, added security costs, denial of service,
and so forth, associated with being connected to a
global and largely unregulated network.

There are already a great number of resources
attached to these networks, and an interest in con-
structing services (online games, file sharing, Internet
telephony, and even the search for extra-terrestrial
life) built by combining distributed resources. How-
ever, if we want equipment owners to share their
computational resources, the benefit is often less
obvious and the risks are certainly greater—it’s a big
bad world out there, full of worms, viruses, and ill-
willed teenagers. To offset the risks, we must provide
one key feature on each host: isolation. If a user is to
offer CPU resources, for instance, she must be assured
there is no negative impact on her normal applica-
tions. In SETI@Home this is relatively easy—the ser-
vice is included as a screen-saver; the managing
organization is generally believed to be capable, trust-
worthy, and benign; and there is only one application.
For a general service that permits arbitrary applica-
tions to run, this is a more difficult problem.

10 ; L O G I N : V O L . 3 0 , N O . 4

; LO G I N : AU G U ST 2 0 0 5 TH E I N EV ITA B I L IT Y O F X E N 11

This is exactly the problem that the Xenoservers proj-
ect is attempting to solve. Using the strong isolation
provided by a virtual machine monitor as a base, we
intend to build a service platform that allows comput-
ers, from common desktops to high-end servers in
commercial hosting facilities, to safely host arbitrary
applications managed completely by an external
party.

The key word in that last sentence is “arbitrary.”
Users have applications that run on all types of hard-
ware, are written in all types of languages, and use
many different libraries and operating systems. For a
service platform to be truly generic for public com-
puting services, it must be agnostic on each and every
one of these factors.

The idea of a global service platform is not new. The
rich history of such efforts, both academic and com-
mercial, is littered with solutions that address only a
subset of the problems of isolation and generality.

N E W P RO G R A M M I N G L A N G UAG E A P P ROAC H E S

Users are told that if they simply change program-
ming language, then they can run their programs on
any machine that has a VM for the byte code for that
programming language, be it Java, C#, or some other
flavor of the decade. This is fine, provided they
rewrite all their applications, someone has ported the
JVM to the OS, and the OS actually supports isola-
tion. For small, new Web-service type applications,
this may be the approach of choice, but there are
many large software systems out there that cannot
reasonably be expected to be rewritten. Such difficul-
ties in rewriting applications and retraining develop-
ers to a new language, and the benefits of software
diversity, all point to the limited applicability of this
technique.

N E W O P E R ATI N G SYSTE M A P P ROAC H E S

Users have been told that if they simply change which
OS they use, then they will find their applications
running in an environment that will be ported to all
known hardware platforms some day; of course, they
will have to change all the applications to call a new
API to make known the resource needs so that the OS
isolation mechanisms know what to do. History has
shown that while isolation has worked quite well in
some of the newer OSes, the time taken for them to
reach the market is longer by far than the time for
system performance to outstrip the multiple demands
a user has.

N E W H A R DWA R E A P P ROAC H E S

Users have been offered the possibility that if they
simply change all their hardware to use a new proces-
sor such as the Transmeta Crusoe, then it can emulate
all known processors (up to a couple of years ago)
and may one day have the resources to provide isola-
tion between the virtual CPUs it implements. This
last approach is really very attractive, but unless one
has the resources of a major semi-conductor outfit,
and a decade to wait, the functionality in the VLIW
CPU microcode falls short of the generality needed.

VM M S

Users have been offered virtual machines at the level
of the CPU. Virtual machine monitors have been
around for decades, offering multiplexing of the
processor and other system resources among multiple
copies of the same OS, and between different concur-
rent operating systems on the same host. Most VMs,
however, only provide the functional isolation neces-
sary to multiplex resources safely; they do not typi-
cally consider the performance isolation required to
manage access to CPU and devices.

Xen is a VMM that offers paravirtualization: The
operating system must be modified slightly to run on
top of Xen, which does not present an exact replica of
the underlying hardware as so-called “pure virtualiza-
tion” packages (such as VMware) do. By changing the
OS-to-hardware interface, Xen is able to make consid-
erable performance improvements, accounting for
the fact that the x86 architecture was not built with
virtualization in mind. Xen currently allows Linux,
FreeBSD, and NetBSD OS instances to share a com-
mon physical host in isolation from one another.
We’ll look at this in more detail in the next section.

Meanwhile, if we really want owners to share their
computational resources, we need to offer more than
isolation. We need to provide incentives. To this end,
the Xenoserver system was conceived.

The Xenoserver model consists of a number of con-
trol-plane components that together provide resource
trading, resource registration and discovery, deploy-
ment of guest OS and applications, OS migration, and
virtualization-supporting storage. These components
rely on the local mechanisms on each node running
Xen. Mediated through local policies, they allow the
owner of resources to manage what is visible and
usable in public and what is isolated and private.

Xen: The Master Platform

Xen is a VMM that paravirtualizes the x86 architec-
ture. Figure 1 shows the structure of a machine run-

ning Xen, hosting a number of different guest operat-
ing systems, including Domain0 running control soft-
ware in a XenoLinux environment.

As a hardware architecture to virtualize, the x86 is
probably best described as uncooperative. Virtualiz-
ing the platform efficiently has presented interesting
technical challenges with almost every aspect of the
hardware: Instruction execution, memory manage-
ment, and device access have all required careful con-
sideration and design to virtualize effectively—
detailed war stories are available in our research
papers. The end result of Xen, though, is a system
that provides efficient virtualization using slightly
modified OSes. Xen currently supports Linux,
NetBSD, FreeBSD, and Plan9. The application binary
interface ABI remains unchanged, and so applications
may be run unmodified. In fact, many of the leading
Linux vendors are including Xen in their distribu-
tions.

F I G U R E 1 . T H E X E N H Y P E R V I S O R

Other virtualization projects such as VMware and
Denali make different cuts in the software stack.
VMware chooses to avoid the requirement of re-
building the OS by presenting an exact virtualization
of the underlying hardware. The benefit of this tech-
nique is the ability to support unmodified, closed-
source OSes such as Windows. The cost, as men-
tioned above, is the inability to make many
performance-enhancing improvements at the virtual-
ization layer. Denali’s approach is in the opposite
direction: the ABI is not maintained, and so applica-
tions must also be recompiled to run on the virtual
architecture.

As mentioned above, the key property that Xen pro-
vides to guest OSes is isolation. Xen rigidly divides
CPU resources between VMs to ensure that they each
receive an allotted amount of processing time. More-

over, as each guest is running on its own set of virtual
hardware, applications in separate OSes are protected
from one another to almost the same degree that they
would be were they installed on separate physical
hosts. This property has attracted considerable atten-
tion in light of the inability of current OSes to protect
applications against spyware, worms, and viruses:
Untrusted applications such as Web browsers may be
seconded to their own virtual machines and com-
pletely separated from other, more trusted applica-
tions.

This strong isolation has also proved very useful in
solving two major problems with device drivers:
driver availability and reliability. Xen is capable of
allowing individual virtual machines to have direct
access to specific pieces of hardware. We have taken
the approach of using a single virtual machine to run
the physical driver for a device (such as a disk or net-
work interface) and then exporting a virtualized ver-
sion of the device to all of the other guest OSes that
are running on the host. This approach means that a
device need only be supported on a single platform
(Linux, for instance) and may be available to all the
OSes that Xen runs. Each guest implements an ideal-
ized disk and network device, which are capable of
connecting to the hardware-specific driver in an iso-
lated device domain. This approach also has the bene-
fit of making drivers, a major source of bugs in oper-
ating systems, more reliable. By running a driver in its
own VM, driver crashes are limited to the driver
itself—other applications may continue to run.
Device domains can even be rebooted to recover
failed drivers, resulting in downtimes on the order of
hundreds of milliseconds in cases where the entire
machine would previously have crashed.

This approach will no doubt sound familiar to anyone
who has worked with micro-kernels in the past; Xen’s
isolation achieves a similar fragmentation of OS sub-
systems. One major difference between Xen and his-
torical work on micro-kernels is that we have fore-
gone the architecturally pure fixation on IPC
mechanisms in favor of a generalized, shared-memory
ring-based communication primitive that is able to
achieve very high throughputs by batching requests.

In addition to the benefits of virtualization as a base
for service platforms, it is worth noting that virtual-
ization has attracted considerable attention as a devel-
opment debug and management environment. The
pervasive debugger project (PDB) in our lab is build-
ing debug support for entire distributed systems. PDB
allows both vertical debugging, tracing execution
through the entire software stack, including OS and
application code, and horizontal debugging, allowing
execution across a complete set of virtual hosts to be
examined concurrently. The decoupling of virtual

12 ; L O G I N : V O L . 3 0 , N O . 4

; LO G I N : AU G U ST 2 0 0 5 TH E I N EV ITA B I L IT Y O F X E N 13

machines from physical hardware has the additional
benefit of allowing the entire state of a system to be
saved at arbitrary points in time. This allows debuggers
to be built that examine old versions of an executing
VM to identify the point at which a bug was intro-
duced, and even to step execution backwards after a
crash to quickly establish the root cause.

Xenoservers: The Service Platform

The larger view of the Xenoservers project is to use
Xen-based hosts to manage and deploy distributed
applications across large numbers of physical hosts.
The two key targets for such deployments are large
clusters and the Internet at large. Perhaps surprisingly,
these two environments are very similar in that they
share the property of desiring an accountable decou-
pling of application management from the mainte-
nance of physical hardware. Several of the organiza-
tions that we have interacted with maintain clusters
containing tens of thousands of nodes used by a wide
variety of users. The aim of Xenoservers is to provide
the necessary higher-level functionality to locate and
account for resources and to otherwise facilitate the
management of such large distributed environments.

Whether it is a federation of IT data centers within a
corporation or a disjoint set of Internet-connected
hosts, the integration of a large set of Xen-based hosts
into a viable service platform needs to allow diverse
sets of hardware facilities (the providers) and applica-
tion managers (the customers) to work together. Xeno-
servers take a market-based approach to managing a
large distributed system with virtually no central man-
agement, and very limited trust between parties.

The remainder of this section briefly discusses the key
components of the project.

R E S O U RC E R E G I STR ATI O N A N D D I S COV E RY

The first key problem in managing such a potentially
fragmented service platform is in keeping track of
the resources on offer, and in finding the required
resources for a particular application. Xenosearch pro-
vides service location, and permits complex queries to
find a number of servers meeting some desired con-
straint, including how far apart they are (e.g., for disas-
ter recovery), as well as the more normal requirement
for how near they are to a set of users (e.g., for game
serving).

M I G R ATI O N

While many server applications may be very long-
lived, the hardware that they run on will invariably

need service from time to time. A major benefit of vir-
tualization is the ability to migrate a running operating
system instance from one physical host to another.
Migration allows a physical host to be unloaded so that
hardware may be serviced, it allows coarse-grained
load balancing in a cluster environment, and it allows
servers to move closer to the users that they serve. We
have demonstrated that migration may be made very
fast—experiments migrating a running Quake server
have achieved repeatable migration times with outages
of less than 100ms.

V I RT UA L I Z ATI O N -S U P P O RTI N G STO R AG E

Large virtual machine–based systems present many
interesting new challenges for the management of stor-
age. Storage must potentially scale to support an order-
of-magnitude more hosts from the same number of
physical machines. In addition it must provide loca-
tion-transparent access to allow migration, and in
many cases must maintain historical versions of disk
images to allow old versions of VMs to be resumed.
The Parallax storage system aims to address these
problems by unifying storage resources across a set of
hosts, and allowing virtual disks to be provided for
individual VMs.

Conclusion

In this article we have attempted to describe our work
to date on the Xen virtual machine monitor, and our
plans for using Xen as a service platform for large dis-
tributed systems in the future. Xen has been publicly
available as an open source VMM for over two years,
and is now very stable and used in production environ-
ments. We enjoy a very active developer community
and are always eager to hear about new applications
and deployments of Xen in the real world.

R E F E R E N C E S
The following resources are useful for finding out more about
Xen:

The Xenoservers project page, http://www.cl.cam.ac
.uk/xeno/, contains links to publications, by the group at
the University of Cambridge, especially: Paul Barham et al.,
“Xen and the Art of Visualization,” Symposium on Operating
System Principles (SOSP) 2003, http://www.cl.cam.ac.uk/
netos/papers/2003-xensosp.pdf.

The team at Clarkson, who patiently reconstructed the
results from the SOSP paper and USENIX had the good
judgment to publish it: Brian Clark et al., “Xen and the Art of
Repeated Research,” http://www.clarkson.edu/class/cs644/
xen/files/repeatedxen-usenix04.pdf.

Xen on Sourceforge: http://sourceforge.net/projects/xen/.

Xensource, the company: http://xensource.com.

