
2 ; L O G I N : V O L . 3 1 , N O . 2

R I K F A R R O W

musings
rik@spirit.com

P R O G R A M M I N G I S A N A R T . W H E N
different people attempt to accomplish the
same tasks, their programs will generally
be quite different. And when examined
carefully, some programs will stand out as
beautiful code, while others could quite
easily be described as ugly.

I learned programming in college, working in the
painful paradigm of punchcards and mainframes.
A single typo meant waiting hours, or even until
the next day, to see the results of the correction.
While I believe that using punchcards encour-
gaged a certain discipline, in coding and in exact-
ness, it did nothing to instill in me a real under-
standing of how to write beautiful programs. I
could, and did, write robust, functioning code,
but it certainly lacked the elegance that I could
sometimes discern in other people’s code.

Inelegant code, however, has effects that go
beyond aesthetics. I once was tasked with writing
a text formatter, with requirements similar to the
ones found in Kernighan and Plauger’s Software
Tools. I didn’t know of that book at the time
(1979), but plowed in with vigor. When finished,
I had written a program that worked correctly,
taking marked-up text, formatting it, and produc-
ing a table of contents, all on a computer that
used two 8-inch floppy disks for file storage.
Compiling the 16-page program took about 15
minutes, and using the finished program, written
in PL/Z (Zilog’s version of PL/I) took a long time
too.

After I left that company, I found out that my
replacement had been given the same task, but
used BASIC instead. His version of the code ran
three times faster because BASIC had much better
string handling routines than PL/Z. I knew my
code would be inefficient in places, and had I
rewritten those places in assembler, my code
would (likely) have been as fast. But I sure was
embarrassed.

Looking Deeper

Today’s computers make the computers I learned
on look like electro-mechanical calculators.
The mainframe I used in college filled a room,
required massive cooling, and actually used other
computers for its input and output (reading
punchcards, writing them to tape, and printing).
The noise of the cooling fans was incredible, but
so were the blinking lights, and the computers ran

slowly enough that you could actually watch patterns emerge in the
display of memory address accesses. With systems like these, every
instruction counted.

When we write programs today, we can easily be misled into believing that
elegance and efficiency don’t matter. Instead, our fast computers can fool
us into thinking that everything is running fine. Problems often don’t
emerge until a program goes into production and fails under real loads, or
turns out to include a security flaw that converts code into a back door.

For this issue, I sought out programmers who were willing to write about
their art. I was fortunate that Brian Kernighan was willing to share his
experience in teaching advanced programming. Brian’s article explains how
he uses testing to maintain AWK and uses that same testing in his classes. I
found myself wondering if I would have been a better programmer had I
learned the testing discipline that Brian instills in his students today.

David Blank-Edelman’s Perl column also begins by discussing testing in
Perl. Various Perl modules provide a framework that can be properly (or
poorly) used to aid in building packages that can be tested before
installation.

Diomidis Spinellis has written about the effects of the many levels of per-
formance found in modern computer memory. The amount of memory
available to run programs at full speed on modern processors is tiny, and
each additional level offers lower performance. Diomidis explains how the
different levels function, provides hints for improving performance in criti-
cal areas, and concludes with an analysis of price/performance of memory
that is sure to arouse some discussion.

You will also discover other programming-focused articles. Chaos
Golubitsky writes about cflow, a tool she used when analyzing the security
of IMAP servers in her LISA ’05 paper. Luke Kanies explains why he chose
Ruby for his implementation of Puppet. If you have heard about Ruby and
are wondering if you should learn it, you should read Luke’s article.

Nick Stoughton reports on his work on several standards committees,
work that has real impact upon both programming and open source. If you
care about these issues, you need to read Nick’s report.

Fond Dreams

While I have been busy ranting about the need for new operating system
design, Andrew Tanenbaum and his students have been busy writing
MINIX 3. I don’t know how many times I have written about the need for
a small kernel that can be trusted and running services without privileges,
in their own protected memory domains, but MINIX 3 actually does this.

Andy wrote MINIX as a tool for teaching operating systems back when
the next best thing was UNIX, an operating system that was growing far
beyond an easy-to-understand size and was encumbered by copyrights and
AT&T lawyers. While we now have open source operating systems, such as
Linux and the BSDs, they too have grown in size and complexity over the
years. MINIX 3 manages the feat of being a next-generation operating sys-
tem with an actually comprehensible size. The kernel is only 4000 LoC
(almost equally split between C and assembly), and the process manage-
ment server is 3600 lines of C. The file containing the implementation of
execve() is 594 LoC in MINIX 3 (servers/pm/exec.c) and 1496 LoC in
Linux (2.6.10/fs/exec.c).

; LO G I N : A P R I L 2 0 0 6 M U S I N G S 3

By “next-generation,” I mean that MINIX is a microkernel in design and
philosophy. Only the kernel runs as privileged, and all other services,
including process management, file systems, networking, and all device
drivers, run in their own private address spaces. Just moving device drivers
out of the kernel and into their own address spaces means that they can
crash without crashing the kernel. It also means that system code, includ-
ing device drivers, can be tested without rebooting, and failed drivers (or
servers) can be restarted.

While MINIX 3 is not going to replace your desktop today, it is already a
good candidate for embedded systems where robustness, reliability, and a
small memory footprint are crucial. Perhaps your cell phone will be run-
ning MINIX 3 some day.

What, No Security?

For a change, there is no Security section in this issue of ;login:. There are
two Sysadmin articles, with David Malone writing a detective story about a
mysterious flood of HTTP requests and Randolph Langley telling us about
software he has created to provide better logging for sudo.

We have two new columns this month. Heison Chak will be writing about
VoIP, providing background in this column for later articles that will help
system administrators charged with supporting (and implementing) VoIP
in their networks. Robert Ferrell has taken charge of the humor depart-
ment, entertaining us with /dev/random.

The summaries of LISA ’05, WORLDS ’05, and FAST ’05 appear in the
back. You might wonder why summaries from December don’t appear until
April, but if you look at the publishing schedule of ;login:, you can see that
none of these conferences finished before the articles for the February
issue were due. I have, of course, read all of these summaries more than
once, and I encourage you to see what is being presented in conferences
you don’t attend.

Finally, we have an Opinion piece from Tom Haynes. Tom writes that he
got so excited about OpenSolaris that he just had to do something about it.
And he did.

4 ; L O G I N : V O L . 3 1 , N O . 2

