
42 ; LOG I N : VO L . 3 2 , NO . 4

D AV I D J O S E P H S E N

iVoyeur: a view
from someplace
nearby
David Josephsen is the author of Building aMonitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and is Senior Systems Engineer at DBG, Inc.,
where hemaintains a gaggle of geographically dis-
persed server farms.Hewon LISA ’04’s Best Paper
award for his co-authoredwork on spammitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

GR E E T I NG S . W E LCOME TO ; L O G I N : ’ S
shiny newmonitoring column.When Rik
first approachedmewith the idea, I must
admit my first thought was to wonder if
there was enough subject matter to fill a
semimonthly column for a reasonable
length of time. Is systemsmonitoring really
that deep? If you have any experience with
the large enterprise-strengthmonitoring
apps, then you know that vendors don’t
seem to think so; they view systemsmoni-
toring as a largely turnkey affair: Purchase
license, install agent, reboot server, repeat.

Even the corporate-backed open source upstarts
seem to share this opinion to a certain degree [1].
While the Patrols and OpenViews of the world
clamor to support the largest number of gadgets,
the Hyperics and Zenosses appear to be differenti-
ating themselves based on their auto-discovery
tools and ease of configuration. If the vendor
claims of “zero to monitoring solution in 30 min-
utes” are to be believed, then a monitoring column
might not be a particularly entertaining prospect
for you.

But as a good friend of mine once (quite rightly)
said, “Knowing that there is a Web server on port
8080 is about 2% of the problem.” Systems moni-
toring, it turns out, is anything but a turnkey affair.
Just behind the shiny facade of port scanners and
SNMP traps lies a stunningly complex problem, in-
volving a question, the answer to which is unique
for each person who asks it. It is a problem in fact
that I think we have yet as a community to fully
understand, much less actually solve.

Consider for a moment what happens when you
type a URL in your browser and get back an error
page. At that moment, the actual status of the Web
“service” in question is a quantum superposition;
it is, to you, in a Schroedinger’s state. You have ob-
served an error page, but that isn’t necessarily in-
dicative of a problem with the Web site itself.
There are a great many things that could be wrong
that have nothing whatsoever to do with the Web
server. The blame might rest with your system’s
network connection, DNS, an unfriendly filter, or a
mistyped “ip route” command by some sleepy ad-
min somewhere in the worldwide mass of intercon-
nected routers between you and the Web page you
seek. Some of these you can test for, and some are
more difficult to detect. The Web site is up and it is

down. There is an objective reality—a singular state—but for the moment it
eludes you. You’ll have to tease it out.

Teasing things out, however, is a talent your monitoring system doesn’t pos-
sess. It checks exactly the parameters you tell it to check, and it returns the
result. If you called the parameter “Web service,” then that’s what the moni-
toring system will tell you is down, and if you aren’t careful about choosing
the parameters, it might even tell you everything is fine in the presence of a
problem—an even more distressing proposition. If only knowing the state of
the cat were as simple as opening the box. Arguably, the pinnacle of our er-
ror detection capability at this point is end-to-end monitoring, involving
scripts that mimic user behavior, thereby encountering the same problems a
user would. But end-to-end monitoring programs are somewhat of a cop-
out, because they don’t actually give you the state of the cat either. They tell
you that there is a problem (from the perspective of the monitoring system),
but not where the problem might actually reside. Their real intent is to catch
errors that more specific checks such as port scanners might not. Monitor-
ing systems, it seems, are not (yet) capable of making the observations nec-
essary to solve our quantum conundrum.

So you can call this notification from your monitoring system a “Web out-
age” on the reporting interface if you like, but that doesn’t make it true. Like
the demanding helplessness of the user crying, “The interwebs are broken,”
there’s information there, but not very much, and it’s of questionable accura-
cy. Perhaps knowing where the problem lay is not critical to you; it’s enough
to know that there is a problem, and you’ll take it from there. But perhaps
automated site-to-site failover depends on bulletproof detection of a specific
error or set of errors, or maybe the problem is chronic and requires a human
to detect patterns in the service availability over time (false alarms make
pattern hunting a bit more difficult). Either way, the monitoring system
probably hasn’t actually answered the question it was intended to answer,
and many of the humans using the system won’t be aware of the distinction.
In systems monitoring, the area where the humans and system meet is espe-
cially problematic.

Really the core of the monitoring problem is that we’ve created ourselves
some rather untrustworthy machines. There’s just an awful lot of places
where things can go bad, and for all of our fancy packet pitching, today’s
PCs are very much islands unto themselves, barely aware of their own state,
much less that of the network around them. We, like an unfortunate mix be-
tween detective and geologist, rely mostly on forensics to gain what insights
we can, using netflow, syslog, utilization graphs, and monitoring tools. And
being every bit as untrustworthy as the systems they are trying to monitor,
the monitoring box itself can have all of the same problems. In the end all it
can give you is its own crudely gleaned opinion of the current state of a set
of services from a single static point in the network, which is often a poor
substitute for knowing the service state firsthand.

So asking one fallible machine in a fallible network its opinion about the fal-
lible machines surrounding it might not be so great an idea. Doing so is not
unlike paying a guy $5 to watch your car at 2:30 a.m. in Tijuana. (Usually it
works out fine, but that doesn’t make it a good idea.) And speaking of mis-
placed faith in humanity, the humans in this equation are equally as fallible
as the machines (if not more so). For one thing, in classic, failure-to-quanti-
fy-the-risk fashion, we sysadmins and our managers seem to place an un-
founded amount of trust in our monitoring systems. As if calling them
“monitoring systems” somehow imbues them with a magical immunity
from mistaking a DNS failure for a Web site outage, or even just crashing
outright.

; LOGIN: AUGUST 2007 IVOYEUR: A VIEW FROM SOMEPLACE NEARBY 43

But alas, our monitoring tools betray us. They crash like normal systems
and are largely dependent upon the same network infrastructure as the oth-
er systems. And yet for some reason the false positives surprise us as much
as false negatives; it “feels” like this sort of thing shouldn’t happen to the
monitoring system. It seems ironic, when there’s no real reason it should. It’s
telling even that I used the word “betray.” So there is an emotional compo-
nent here, and its most common effect is to cause us to ignore a monitoring
system that has proven itself to be unduly chatty, or sometimes incorrect.
We don’t “lose faith” in Tomcat when it runs out of threads and starts hand-
ing out 500s, but for some reason we are quick to anthropomorphize and
discredit a monitoring server for its digressions, even though it may be the
worst possible server to take with a grain of salt.

With “normal” systems—the ones without the magical “monitoring system”
moniker—we mitigate the risk of failure with redundancy, incorporating
load balancers, VRRP, and BGP multihoming; redundancy is an industry
unto itself, and it could certainly help out in a monitoring context. It’s not
uncommon for a large organization to have a failover monitoring box, and
large installs sometimes require numerous monitoring systems to aggregate
alerts to a master in order to scale, but these setups don’t improve the reso-
lution of our failure detection ability.

Parallel systems have potential in this regard; two opinions are better than
one. Yet curiously, monitoring systems are seldom deployed this way. (If you
have one, I’d like to hear about it.) This might be because having parallel
monitoring systems agree on a given service state is a difficult problem to
solve, which in itself is a decent proof of the fallibility I just alluded to. What
do you do when two systems disagree? Further, avoiding things such as re-
dundant notifications requires that the monitoring systems be somewhat
aware of each other’s opinion of the current state of things, making
prospects even hairier.

Leslie Lamport is intimately familiar with getting parallel computational en-
tities to agree on states. His work on the Byzantine Generals [2] problem is
used widely at NASA and the aerospace industry to design fault-tolerant
flight-control systems. His work, and the work of those at SRI, showed that
3n + 1 processors are generally required to tolerate n faults. In layman’s
terms and warped to suit our needs, the opinions of 4 monitoring systems
would be needed to reach a trustworthy agreement on a given service if one
of them were malfunctioning. I don’t have any fancy math to back this up,
but it “feels” like the odds of 1 out of 4 PC-based monitoring systems misbe-
having at any given moment are good. So monitoring systems, it seems, may
need to be a bit more redundant than we’re used to before they can begin to
give really meaningful opinions. We can’t simply toss another box in with-
out making things a lot more complicated, and it turns out we’d need to
throw in quite a few before seeing a real return on the investment.

None of this is to say that systems monitoring is impossible or hopelessly
broken. In practice monitoring tools usually work pretty darn well, and they
are certainly better than nothing at all. My monitoring systems have saved
my gravy more times than I can remember. But it’s useful, I think, to imagine
a reference system, some inexpensive, Byzantine failure–proof, massively
parallel monitoring system communicating securely via out-of-band chan-
nels and telling us with flawless accuracy and resolution about specific prob-
lems and their causes without burdening the network with traffic or the sys-
tems with bulky agents. It introduces no security flaws, has an infinite
amount of trending and utilization data on every metric we can imagine on
every server, has a network device in the environment, and can do complex
event correlation and aberrant behavior detection in real time. Maybe it has

44 ; LOG I N : VO L . 3 2 , NO . 4

some of those heuristics and biological diversity I’m always reading about,
and what the heck, it runs Plan9, and doubles as a margarita machine. This
makes it easier to imagine the huge space of gray between the reference sys-
tem and the system you probably have in your shop today. That enormous
gray space is what the vendors are ignoring when they say, “0 to monitoring
solution in 30 minutes.”

So, needless to say, I happily took Rik up on his offer. In this column, I want
to explore the gray space, providing practical solutions, advice, code, and
general food for thought. My sincere hope is that perhaps somewhere along
the way we’ll both gain a better understanding of the problem, and maybe
move a few gradients closer to the monitoring system of our dreams. Expect
topics to range from network architecture to SNMP to security to data visu-
alization to temperature sensors to dealing with humans and back again,
running the gamut of what you as a sysadmin might run into in the course
of implementing and maintaining a monitoring system.

To a large extent the information I provide will be specific to Nagios [3],
which is probably the most nearly ubiquitous open source monitoring pro-
gram today. This is not, however, a column about Nagios. I would prefer
that you think of Nagios as a reference implementation language rather than
as a design requirement. If systems monitoring has an XML-like means of
specifying solutions, a prototyping language that is relatively easily translat-
ed between disparate systems, then Nagios, with its (almost painfully) open
architecture and liberal lack of design assumptions, is probably the closest
thing I’ve seen to it. So my use of Nagios in this column is only to ensure
that the solutions discussed herein have a good chance of being translated to
whatever you happen to use (and if that’s Nagios, then all the better).

Feel free to shoot me email [4] or comment on my blog [5] if you would like
to talk about something specific or just want to say hi. And finally, believe it
or not, I honestly plan to maintain a better signal-to-noise ratio in my future
articles, so sorry for the theoretical ramble. I promise to have some nitty-
gritty for you in the next issue. Take it easy.

REFERENCES

[1] http://books.slashdot.org/comments.pl?sid=230333&cid=18695063.

[2] http://research.microsoft.com/users/lamport/pubs/pubs.html#byz.

[3] http://www.nagios.org.

[4] dave-usenix@skeptech.org.

[5] http://www.skeptech.org.

; LOGIN: AUGUST 2007 IVOYEUR: A VIEW FROM SOMEPLACE NEARBY 45

