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v I r t u a l I z at I O n  t e c h n O l O g y  h a s 
improved dramatically over the past decade 
and has now become pervasive within the 
service-delivery industry. Virtual machines 
are particularly attractive for server con-
solidation. Their strong resource and fault-
isolation guarantees allow multiplexing of 
hardware among individual services, each 
configured with a custom operating sys-
tem. Although physical CPUs are frequently 
amenable to multiplexing, main memory 
is not. Thus, memory is often the primary 
bottleneck to increasing the degree of mul-
tiplexing in enterprise and data center set-
tings. Difference Engine [1] enables virtual 
machine (VM) monitors to allocate more 
machine memory for VMs than is present 
in the system, by using aggressive memory 
sharing techniques. As with VMware ESX 
server, Difference Engine shares identical 
memory pages. In addition, Difference En-
gine also shares pages with only partial con-
tent overlap and compresses infrequently 
used pages, enabling it to further improve 
memory savings by up to a factor of 2.5 
compared to identical page sharing alone in 
VMware ESX server.

With main memory as a consolidation bottleneck, 
researchers and commercial VM software vendors 
have developed techniques to decrease the memory 
requirements for virtual machines. The VMware 
ESX server implements content-based page shar-
ing, in which virtual pages in different VMs have 
identical content and therefore can share the same 
machine page copy-on-write. Identical page shar-
ing has been shown to reduce the memory foot-
print of multiple, homogeneous virtual machines 
by 10%–40% [2]. We found, however, that the ben-
efits of identical page sharing decline rapidly when 
more heterogeneous guest VMs are used.

The premise of this work is that there are signifi-
cant additional benefits from sharing at a sub-
page granularity (i.e., there are many pages that 
are nearly identical). We show that it is possible 
to efficiently find such similar pages and to co-
alesce them into a much smaller memory footprint. 
Among the set of similar pages, we are able to store 
most as patches relative to a single baseline page. 
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We also compress those pages that are unlikely to be accessed in the near 
future. In both patching and compression, Difference Engine relies on find-
ing pages that are less frequently used to offset the cost of recovering these 
pages. To support these techniques, we added a swapping service so that 
even when memory has been oversubscribed (by allocating more memory 
than exists), all VM guests will have access to the memory their OS was con-
figured to use by leveraging disk as secondary storage.

Difference Engine provides these benefits without negatively impacting ap-
plication performance: in our experiments across a variety of workloads, 
Difference Engine imposes less than 7% execution time overhead. In return, 
we further show that Difference Engine can take advantage of the improved 
memory efficiency to increase aggregate system performance by utilizing 
the free memory to create additional virtual machines in support of a tar-
get workload. Thus, for a prototypical Internet service workload, Difference 
Engine is able to use the additional memory to increase maximum request 
throughput by nearly 40%.

architecture

Difference Engine uses three distinct mechanisms that work together to 
realize the benefits of memory sharing, as shown in Figure 1. In this ex-
ample, two VMs have allocated five pages total, each initially backed by dis-
tinct pages in machine memory (Figure 1a). For brevity, we only show how 
the mapping from guest physical memory to machine memory changes; 
the guest virtual to guest physical mapping remains unaffected. First, for 
identical pages across the VMs, we store a single copy and create refer-
ences that point to the original. In Figure 1b, one page in VM-2 is identi-
cal to one in VM-1. For pages that are similar but not identical, we store a 

1a. Initial State 1b. Page Sharing

F i g u r e  1 :  t h e  i n i t i A L  s t A t e  A n d 
t h e  t h r e e  d i F F e r e n t  m e m O r y 
c O n s e r V A t i O n  t e c h n i q u e s 
e m p L O y e d  b y  d i F F e r e n c e  e n g i n e : 
p A g e  s h A r i n g ,  p A g e  p A t c h i n g ,  A n d 
c O m p r e s s i O n .  i n  t h i s  e x A m p L e ,  F i V e 
p h y s i c A L  p A g e s  A r e  s t O r e d  i n  L e s s 
t h A n  t h r e e  m A c h i n e  m e m O r y  p A g e s 
F O r  A  s A V i n g s  O F  r O u g h Ly  5 0 % .

1c. Page Patching 1d. Page Compression
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patch against a reference page and discard the redundant copy. In Figure 1c, 
the second page of VM-2 is stored as a patch to the second page of VM-1. 
Finally, for pages that are unique and infrequently accessed, we compress 
them in memory to save space. In Figure 1d, the remaining private page in 
VM-1 is compressed. The actual machine memory footprint is now less than 
three pages, down from five pages originally.

In all three cases, efficiency concerns require us to select candidate pages 
that are unlikely to be accessed in the near future. We employ a global clock 
that scans memory in the background, identifying pages that have not been 
recently used. In addition, reference pages for sharing or patching must be 
found quickly without introducing performance overhead. Difference Engine 
uses full-page hashes and hash-based fingerprints to identify good candi-
dates. Finally, we implement a demand paging mechanism that supplements 
main memory by writing VM pages to disk to support overcommitment, al-
lowing the total memory required for all VMs to temporarily exceed the ma-
chine memory capacity.

page Sharing

Difference Engine’s implementation of content-based page sharing is simi-
lar to those in earlier systems. We walk through memory looking for identi-
cal pages. As we scan memory, we hash each page and index it based on its 
hash value. Identical pages hash to the same value and a collision indicates 
that a potential matching page has been found. We perform a byte-by-byte 
comparison to ensure that the pages are indeed identical before sharing 
them.

Upon identifying target pages for sharing, we reclaim one of the pages and 
update the virtual memory to point at the shared copy. Both mappings are 
marked read-only, so that writes to a shared page cause a page fault that 
will be trapped by the virtual machine monitor (VMM). The VMM returns 
a private copy of the shared page to the faulting VM and updates the virtual 
memory mappings appropriately. If no VM refers to a shared page, the VMM 
reclaims it and returns it to the free memory pool.

patching

Traditionally, the goal of page sharing has been to eliminate redundant cop-
ies of identical pages. Difference Engine considers further reducing the 
memory required to store similar pages by constructing patches that repre-
sent a page as the difference relative to a reference page.

One of the principal complications with subpage sharing is identifying can-
didate reference pages. Difference Engine uses a parametrized scheme to 
identify similar pages based upon the hashes of several 64-byte portions of 
each page. In particular, HashSimilarityDetector(k,s) hashes the contents of 
(k × s) 64-byte blocks at randomly chosen locations on the page and then 
groups these hashes together into k groups of s hashes each. We use each 
group as an index into a hash table.

Higher values of s capture local similarity, whereas higher k values incorpo-
rate global similarity. Hence, HashSimilarityDetector(1,1) will choose one 
block on a page and index that block; pages are considered similar if that 
block of data matches. HashSimilarityDetector(1,2) combines the hashes 
from two different locations in the page into one index of length two. Hash-
SimilarityDetector(2,1) instead indexes each page twice: once based on the 
contents of a first block, and again based on the contents of a second block. 
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Pages that match at least one of the two blocks are chosen as candidates. 
Through experimentation, we discovered that HashSimilarityDetector(2,1) 
with one candidate does surprisingly well. There is a substantial gain from 
hashing two distinct blocks in the page separately, but little additional gain 
by hashing more blocks.

Difference Engine indexes a page by hashing 64-byte blocks at two fixed 
locations in the page (chosen at random) and uses each hash value as a sepa-
rate index to store the page in the hash table. To find a candidate similar 
page, the system computes hashes at the same two locations, looks up those 
hash table entries, and calculates the page patch to determine memory sav-
ings if it finds a match for either of the indexed blocks.

Our current implementation uses 18-bit hashes to keep the hash table small 
to cope with the limited size of the Xen heap. In general, though, larger 
hashes might be used for improved savings and fewer collisions. Our analy-
sis suggests, however, that the benefits from increasing the hash size are 
modest.

compression

Finally, for pages that are not significantly similar to other pages in mem-
ory, we consider compressing them to reduce the memory footprint. Com-
pression is useful only if the compression ratio is reasonably high and, like 
patching, if selected pages are accessed infrequently. Otherwise, the over-
head of compression/decompression will outweigh the benefits. We identify 
candidate pages for compression using a global clock algorithm (see “Clock,” 
below), assuming that pages that have not been recently accessed are un-
likely to be accessed in the near future.

Difference Engine supports multiple compression algorithms, currently 
LZO and WKdm as described in Wilson et al. [3]; we invalidate compressed 
pages in the VM and save them in a dynamically allocated storage area in 
machine memory. When a VM accesses a compressed page, Difference En-
gine decompresses the page and returns it to the VM uncompressed. It re-
mains there until it is again considered for compression.

paging Machine Memory

Although Difference Engine will deliver some (typically high) level of mem-
ory savings, in the worst case all VMs might actually require all of their al-
located memory. Setting aside sufficient physical memory to account for this 
prevents Difference Engine from using the memory to create additional VMs. 
Not doing so, however, may result in temporarily overshooting the physical 
memory capacity of the machine and causing a system crash. We therefore 
require a demand-paging mechanism to supplement main memory by writ-
ing pages out to disk in such cases.

A good candidate page for swapping out should not be accessed in the near 
future—the same requirement as compressed/patched pages. In fact, Differ-
ence Engine also considers compressed and patched pages as candidates for 
swapping out. Once the contents of the page are written to disk, the page 
can be reclaimed. When a VM accesses a swapped-out page, Difference En-
gine fetches it from disk and copies the contents into a newly allocated page 
that is mapped appropriately in the VM’s memory.

Since disk I/O is involved, swapping in/out is an expensive operation. Fur-
ther, a swapped page is unavailable for sharing or as a reference page for 
patching. Therefore, swapping should be an infrequent operation. Difference 
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Engine implements the core mechanisms for paging and leaves policy deci-
sions, such as when and how much to swap, to user-level tools.

Implementation

We have implemented Difference Engine in the Xen 3.0.4 VMM in roughly 
14,500 lines of code. An additional 20,000 lines come from ports of existing 
patching and compression algorithms (Xdelta, LZO, WKdm) to run inside 
Xen.

Xen and other platforms that support fully virtualized guests use a mecha-
nism called “shadow page tables” to manage guest OS memory [2]. The guest 
OS has its own copy of the page table that it manages, believing that they 
are the hardware page tables, though in reality they are just a map from the 
guest’s virtual memory to its notion of physical memory (V2P map). In addi-
tion, Xen maintains a map from the guest’s notion of physical memory to the 
machine memory (P2M map). The shadow page table is a cache of the results 
of composing the V2P map with the P2M map, mapping guest virtual mem-
ory directly to machine memory.

Difference Engine relies on manipulating P2M maps and the shadow page 
tables to interpose on page accesses. For simplicity, we do not consider any 
pages mapped by Domain-0 (the privileged, control domain in Xen), which, 
among other things, avoids the potential for circular page faults.

clock

Difference Engine implements a not-recently-used (NRU) policy [4] to se-
lect candidate pages for sharing, patching, compression, and swapping out. 
On each invocation, the clock scans a portion of machine memory, checking 
and clearing the referenced (R) and modified (M) bits on pages. Thus, pages 
with the R or the M bit set must have been referenced or modified since the 
last scan. We ensure that successive scans of memory are separated by at 
least four seconds in the current implementation, to give domains a chance 
to set the R/M bits on frequently accessed pages. In the presence of multiple 
VMs, the clock scans a small portion of each VM’s memory in turn for fair-
ness. The external API exported by the clock is simple: Return a list of pages 
(of some maximum size) that have not been accessed in some time.

In OSes running on bare metal, the R/M bits on page-table entries are typi-
cally updated by the processor. Xen structures the P2M map exactly like the 
page tables used by the hardware. However, since the processor does not 
actually use the P2M map as a page table, the R/M bits are not updated au-
tomatically. We modify Xen’s shadow page table code to set these bits when 
creating readable or writable page mappings. Unlike conventional operat-
ing systems, where there may be multiple sets of page tables that refer to the 
same set of pages, in Xen there is only one P2M map per domain. Hence, 
each guest page corresponds unambiguously to one P2M entry and one set 
of R/M bits.

real-World applications

We now present the performance of Difference Engine on a variety of 
workloads. We seek to answer two questions. First, how effective are the 
memory-saving mechanisms at reducing memory usage for real-world appli-
cations? Second, what is the impact of those memory-sharing mechanisms 
on system performance? Since the degree of possible sharing depends on 
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the software configuration, we consider several different cases of application 
mixes.

To put our numbers in perspective, we conduct head-to-head comparisons 
with VMware ESX Server for three different workload mixes. We run ESX 
Server 3.0.1 build 32039 on a Dell PowerEdge 1950 system. Note that even 
though this system has two 2.3-GHz Intel Xeon processors, our VMware 
license limits our usage to a single CPU. We therefore restrict Xen (hence, 
Difference Engine) to use a single CPU for fairness. We also ensure that the 
OS images used with ESX match those used with Xen, especially the file 
system and disk layout. Note that we are only concerned with the effective-
ness of the memory sharing mechanism, not in comparing the application 
performance across the two hypervisors. Further, we configure ESX to use 
its most aggressive page sharing settings, in which it scans 10,000 pages/sec-
ond (compared to its default of 200); we configure Difference Engine simi-
larly.

F i g u r e  2 :  F O u r  i d e n t i c A L  V m s  e x e c u t e  d b e n c h .  F O r  s u c h 
h O m O g e n e O u s  w O r k L O A d s ,  b O t h  d i F F e r e n c e  e n g i n e  A n d  e s x 
e V e n t u A L Ly  y i e L d  s i m i L A r  s A V i n g s ,  b u t  d e  e x t r A c t s  m O r e 
s A V i n g s  w h i L e  t h e  b e n c h m A r k  i s  i n  p r O g r e s s .

In our first set of benchmarks, we test the base scenario where all VMs on 
a machine run the same OS and applications. This scenario is common in 
cluster-based systems where several services are replicated to provide fault 
tolerance or load balancing. Our expectation is that significant memory sav-
ings are available and that most of the savings will come from page sharing. 
The graphs shown in Figures 2–4 break out the contributions in Difference 
Engine by page compression (the least), patching, and page sharing (the 
most) against page sharing in ESX Server.

We set up four 512-MB virtual machines running Debian 3.1. Each VM ex-
ecutes dbench for 10 minutes followed by a stabilization period of 20 min-
utes. Figure 2 shows the amount of memory saved as a function of time. 
First, note that eventually both ESX and Difference Engine reclaim roughly 
the same amount of memory (with the graph for ESX plateauing beyond 
1,200 seconds). However, while dbench is executing, Difference Engine de-
livers approximately 1.5 times the memory savings achieved by ESX. As be-
fore, the bulk of Difference Engine savings comes from page sharing for the 
homogeneous workload case.

We used two different sets of guests VMs for testing heterogeneous performance.

MIXED-1: Windows XP SP1 hosting RUBiS; Debian 3.1 compiling the ■■

Linux kernel; Slackware 10.2 compiling Vim 7.0 followed by a run of the 
lmbench benchmark. 
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MIXED-2: Windows XP SP1 running Apache 2.2.8 hosting approximately ■■

32,000 static Web pages crawled from Wikipedia, with httperf running 
on a separate machine requesting these pages; Debian 3.1 running the 
SysBench database benchmark using 10 threads to issue 100,000 requests; 
Slackware 10.2 running dbench with 10 clients for six minutes followed by 
a run of the IOZone benchmark.

Figures 3 and 4 show the memory savings as a function of time for the two 
heterogeneous workloads, MIXED-1 and MIXED-2. We make the following 
observations. First, in steady state, Difference Engine delivers a factor of 1.6 
to 2.5 more memory savings than ESX. For instance, for the MIXED-2 work-
load, Difference Engine could host the three VMs allocated 512 MB of physi-
cal memory each in approximately 760 MB of machine memory; ESX would 
require roughly 1100 MB of machine memory. The remaining, significant, 
savings come from patching and compression. And these savings come at a 
small cost. The baseline configuration is regular Xen without Difference En-
gine. In all cases, performance overhead of Difference Engine is within 7% 
of the baseline. For the same workload, we find that performance under ESX 
with aggressive page sharing is also within 5% of the ESX baseline with no 
page sharing.

F i g u r e  3 :  m e m O r y  s A V i n g s  F O r  m i x e d - 1 . 
d i F F e r e n c e  e n g i n e  s A V e s  u p  t O  4 5 %  m O r e 
m e m O r y  t h A n  e s x .

F i g u r e  4 :  m e m O r y  s A V i n g s  F O r  m i x e d - 2 . 
d i F F e r e n c e  e n g i n e  s A V e s  A L m O s t  t w i c e  A s 
m u c h  m e m O r y  A s  e s x .
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conclusion

One of the primary bottlenecks to higher degrees of virtual machine multi-
plexing is main memory. Earlier work shows that substantial memory sav-
ings are available from harvesting identical pages across virtual machines 
when running homogeneous workloads. The premise of this work is that 
there are significant additional memory savings available from locating and 
patching similar pages and in-memory page compression. We present the 
design and evaluation of Difference Engine to demonstrate the potential 
memory savings available from leveraging a combination of whole page shar-
ing, page patching, and compression. We discuss our experience addressing 
a number of technical challenges, including algorithms to quickly identify 
candidate pages for patching, demand paging to support oversubscription of 
total assigned physical memory, and a clock mechanism to identify appro-
priate target machine pages for sharing, patching, compression, and paging. 
Our performance evaluation shows that Difference Engine delivers an addi-
tional factor of 1.6 to 2.5 more memory savings than VMware ESX Server for 
a variety of workloads, with minimal performance overhead. Difference En-
gine mechanisms might also be used to improve single OS memory manage-
ment; we leave such exploration to future work.
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