
24 ; LO G I N : vO L . 3 4, N O. 2

d i w a k e R g u p ta , s a n g M i n l e e , M i c h a e l
v R a B l e , s t e F a n s a v a g e , a l e x c .
s n o e R e n , g e o R g e v a R g h e s e , g e o F F R e y
M . v o e l k e R , a n d a M i n v a h d at

Difference Engine
Diwaker Gupta’s Ph.D research focused on virtual-
ization, network emulation, and large-scale system
testing. He is also interested in cloud computing
and Web applications. He is currently employed at
Aster Data Systems.

diwaker@asterdata.com

Sangmin Lee is a Ph.D student in the Department
of Computer Sciences at the University of Texas,
Austin. His research interests include distributed
computing and operating systems.

sangmin@cs.utexas.edu

Michael Vrable is pursuing a Ph.D. in computer sci-
ence at the University of California, San Diego, and
is advised by professors Stefan Savage and Geoffrey
Voelker. He received an M.S. from UCSD and a B.S.
from Harvey Mudd College.

mvrable@cs.ucsd.edu

Stefan Savage is an associate professor of computer
science at the University of California, San Diego.
He has a B.S. in history and reminds his colleagues
of this fact any time the technical issues get too
complicated.

savage@cs.ucsd.edu

Alex C. Snoeren is an associate professor in the
Computer Science and Engineering Department at
the University of California, San Diego. His research
interests include operating systems, distributed
computing, and mobile and wide-area networking.

snoeren@cs.ucsd.edu

George Varghese is a professor of computer science
at the University of California, San Diego. Several
algorithms he has helped develop have found their
way into commercial systems including Linux
(timing wheels), the Cisco GSR (DRR), and Microsoft
Windows (IP lookups).

varghese@cs.ucsd.edu

Geoffrey M. Voelker is an associate professor of
computer science and engineering at the Univer-
sity of California, San Diego. He works in computer
systems and networking.

voelker@cs.ucsd.edu

Amin Vahdat is a professor at the University of Cali-
fornia, San Diego. His research focuses broadly on
computer systems, including distributed systems,
networks, and operating systems.

vahdat@cs.ucsd.edu

v I r t u a l I z at I O n t e c h n O l O g y h a s
improved dramatically over the past decade
and has now become pervasive within the
service-delivery industry. Virtual machines
are particularly attractive for server con-
solidation. Their strong resource and fault-
isolation guarantees allow multiplexing of
hardware among individual services, each
configured with a custom operating sys-
tem. Although physical CPUs are frequently
amenable to multiplexing, main memory
is not. Thus, memory is often the primary
bottleneck to increasing the degree of mul-
tiplexing in enterprise and data center set-
tings. Difference Engine [1] enables virtual
machine (VM) monitors to allocate more
machine memory for VMs than is present
in the system, by using aggressive memory
sharing techniques. As with VMware ESX
server, Difference Engine shares identical
memory pages. In addition, Difference En-
gine also shares pages with only partial con-
tent overlap and compresses infrequently
used pages, enabling it to further improve
memory savings by up to a factor of 2.5
compared to identical page sharing alone in
VMware ESX server.

With main memory as a consolidation bottleneck,
researchers and commercial VM software vendors
have developed techniques to decrease the memory
requirements for virtual machines. The VMware
ESX server implements content-based page shar-
ing, in which virtual pages in different VMs have
identical content and therefore can share the same
machine page copy-on-write. Identical page shar-
ing has been shown to reduce the memory foot-
print of multiple, homogeneous virtual machines
by 10%–40% [2]. We found, however, that the ben-
efits of identical page sharing decline rapidly when
more heterogeneous guest VMs are used.

The premise of this work is that there are signifi-
cant additional benefits from sharing at a sub-
page granularity (i.e., there are many pages that
are nearly identical). We show that it is possible
to efficiently find such similar pages and to co-
alesce them into a much smaller memory footprint.
Among the set of similar pages, we are able to store
most as patches relative to a single baseline page.

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 25

We also compress those pages that are unlikely to be accessed in the near
future. In both patching and compression, Difference Engine relies on find-
ing pages that are less frequently used to offset the cost of recovering these
pages. To support these techniques, we added a swapping service so that
even when memory has been oversubscribed (by allocating more memory
than exists), all VM guests will have access to the memory their OS was con-
figured to use by leveraging disk as secondary storage.

Difference Engine provides these benefits without negatively impacting ap-
plication performance: in our experiments across a variety of workloads,
Difference Engine imposes less than 7% execution time overhead. In return,
we further show that Difference Engine can take advantage of the improved
memory efficiency to increase aggregate system performance by utilizing
the free memory to create additional virtual machines in support of a tar-
get workload. Thus, for a prototypical Internet service workload, Difference
Engine is able to use the additional memory to increase maximum request
throughput by nearly 40%.

architecture

Difference Engine uses three distinct mechanisms that work together to
realize the benefits of memory sharing, as shown in Figure 1. In this ex-
ample, two VMs have allocated five pages total, each initially backed by dis-
tinct pages in machine memory (Figure 1a). For brevity, we only show how
the mapping from guest physical memory to machine memory changes;
the guest virtual to guest physical mapping remains unaffected. First, for
identical pages across the VMs, we store a single copy and create refer-
ences that point to the original. In Figure 1b, one page in VM-2 is identi-
cal to one in VM-1. For pages that are similar but not identical, we store a

1a. Initial State 1b. Page Sharing

F i g u r e 1 : t h e i n i t i A L s t A t e A n d
t h e t h r e e d i F F e r e n t m e m O r y
c O n s e r V A t i O n t e c h n i q u e s
e m p L O y e d b y d i F F e r e n c e e n g i n e :
p A g e s h A r i n g , p A g e p A t c h i n g , A n d
c O m p r e s s i O n . i n t h i s e x A m p L e , F i V e
p h y s i c A L p A g e s A r e s t O r e d i n L e s s
t h A n t h r e e m A c h i n e m e m O r y p A g e s
F O r A s A V i n g s O F r O u g h Ly 5 0 % .

1c. Page Patching 1d. Page Compression

26 ; LO G I N : vO L . 3 4, N O. 2

patch against a reference page and discard the redundant copy. In Figure 1c,
the second page of VM-2 is stored as a patch to the second page of VM-1.
Finally, for pages that are unique and infrequently accessed, we compress
them in memory to save space. In Figure 1d, the remaining private page in
VM-1 is compressed. The actual machine memory footprint is now less than
three pages, down from five pages originally.

In all three cases, efficiency concerns require us to select candidate pages
that are unlikely to be accessed in the near future. We employ a global clock
that scans memory in the background, identifying pages that have not been
recently used. In addition, reference pages for sharing or patching must be
found quickly without introducing performance overhead. Difference Engine
uses full-page hashes and hash-based fingerprints to identify good candi-
dates. Finally, we implement a demand paging mechanism that supplements
main memory by writing VM pages to disk to support overcommitment, al-
lowing the total memory required for all VMs to temporarily exceed the ma-
chine memory capacity.

page Sharing

Difference Engine’s implementation of content-based page sharing is simi-
lar to those in earlier systems. We walk through memory looking for identi-
cal pages. As we scan memory, we hash each page and index it based on its
hash value. Identical pages hash to the same value and a collision indicates
that a potential matching page has been found. We perform a byte-by-byte
comparison to ensure that the pages are indeed identical before sharing
them.

Upon identifying target pages for sharing, we reclaim one of the pages and
update the virtual memory to point at the shared copy. Both mappings are
marked read-only, so that writes to a shared page cause a page fault that
will be trapped by the virtual machine monitor (VMM). The VMM returns
a private copy of the shared page to the faulting VM and updates the virtual
memory mappings appropriately. If no VM refers to a shared page, the VMM
reclaims it and returns it to the free memory pool.

patching

Traditionally, the goal of page sharing has been to eliminate redundant cop-
ies of identical pages. Difference Engine considers further reducing the
memory required to store similar pages by constructing patches that repre-
sent a page as the difference relative to a reference page.

One of the principal complications with subpage sharing is identifying can-
didate reference pages. Difference Engine uses a parametrized scheme to
identify similar pages based upon the hashes of several 64-byte portions of
each page. In particular, HashSimilarityDetector(k,s) hashes the contents of
(k × s) 64-byte blocks at randomly chosen locations on the page and then
groups these hashes together into k groups of s hashes each. We use each
group as an index into a hash table.

Higher values of s capture local similarity, whereas higher k values incorpo-
rate global similarity. Hence, HashSimilarityDetector(1,1) will choose one
block on a page and index that block; pages are considered similar if that
block of data matches. HashSimilarityDetector(1,2) combines the hashes
from two different locations in the page into one index of length two. Hash-
SimilarityDetector(2,1) instead indexes each page twice: once based on the
contents of a first block, and again based on the contents of a second block.

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 27

Pages that match at least one of the two blocks are chosen as candidates.
Through experimentation, we discovered that HashSimilarityDetector(2,1)
with one candidate does surprisingly well. There is a substantial gain from
hashing two distinct blocks in the page separately, but little additional gain
by hashing more blocks.

Difference Engine indexes a page by hashing 64-byte blocks at two fixed
locations in the page (chosen at random) and uses each hash value as a sepa-
rate index to store the page in the hash table. To find a candidate similar
page, the system computes hashes at the same two locations, looks up those
hash table entries, and calculates the page patch to determine memory sav-
ings if it finds a match for either of the indexed blocks.

Our current implementation uses 18-bit hashes to keep the hash table small
to cope with the limited size of the Xen heap. In general, though, larger
hashes might be used for improved savings and fewer collisions. Our analy-
sis suggests, however, that the benefits from increasing the hash size are
modest.

compression

Finally, for pages that are not significantly similar to other pages in mem-
ory, we consider compressing them to reduce the memory footprint. Com-
pression is useful only if the compression ratio is reasonably high and, like
patching, if selected pages are accessed infrequently. Otherwise, the over-
head of compression/decompression will outweigh the benefits. We identify
candidate pages for compression using a global clock algorithm (see “Clock,”
below), assuming that pages that have not been recently accessed are un-
likely to be accessed in the near future.

Difference Engine supports multiple compression algorithms, currently
LZO and WKdm as described in Wilson et al. [3]; we invalidate compressed
pages in the VM and save them in a dynamically allocated storage area in
machine memory. When a VM accesses a compressed page, Difference En-
gine decompresses the page and returns it to the VM uncompressed. It re-
mains there until it is again considered for compression.

paging Machine Memory

Although Difference Engine will deliver some (typically high) level of mem-
ory savings, in the worst case all VMs might actually require all of their al-
located memory. Setting aside sufficient physical memory to account for this
prevents Difference Engine from using the memory to create additional VMs.
Not doing so, however, may result in temporarily overshooting the physical
memory capacity of the machine and causing a system crash. We therefore
require a demand-paging mechanism to supplement main memory by writ-
ing pages out to disk in such cases.

A good candidate page for swapping out should not be accessed in the near
future—the same requirement as compressed/patched pages. In fact, Differ-
ence Engine also considers compressed and patched pages as candidates for
swapping out. Once the contents of the page are written to disk, the page
can be reclaimed. When a VM accesses a swapped-out page, Difference En-
gine fetches it from disk and copies the contents into a newly allocated page
that is mapped appropriately in the VM’s memory.

Since disk I/O is involved, swapping in/out is an expensive operation. Fur-
ther, a swapped page is unavailable for sharing or as a reference page for
patching. Therefore, swapping should be an infrequent operation. Difference

28 ; LO G I N : vO L . 3 4 , N O. 2

Engine implements the core mechanisms for paging and leaves policy deci-
sions, such as when and how much to swap, to user-level tools.

Implementation

We have implemented Difference Engine in the Xen 3.0.4 VMM in roughly
14,500 lines of code. An additional 20,000 lines come from ports of existing
patching and compression algorithms (Xdelta, LZO, WKdm) to run inside
Xen.

Xen and other platforms that support fully virtualized guests use a mecha-
nism called “shadow page tables” to manage guest OS memory [2]. The guest
OS has its own copy of the page table that it manages, believing that they
are the hardware page tables, though in reality they are just a map from the
guest’s virtual memory to its notion of physical memory (V2P map). In addi-
tion, Xen maintains a map from the guest’s notion of physical memory to the
machine memory (P2M map). The shadow page table is a cache of the results
of composing the V2P map with the P2M map, mapping guest virtual mem-
ory directly to machine memory.

Difference Engine relies on manipulating P2M maps and the shadow page
tables to interpose on page accesses. For simplicity, we do not consider any
pages mapped by Domain-0 (the privileged, control domain in Xen), which,
among other things, avoids the potential for circular page faults.

clock

Difference Engine implements a not-recently-used (NRU) policy [4] to se-
lect candidate pages for sharing, patching, compression, and swapping out.
On each invocation, the clock scans a portion of machine memory, checking
and clearing the referenced (R) and modified (M) bits on pages. Thus, pages
with the R or the M bit set must have been referenced or modified since the
last scan. We ensure that successive scans of memory are separated by at
least four seconds in the current implementation, to give domains a chance
to set the R/M bits on frequently accessed pages. In the presence of multiple
VMs, the clock scans a small portion of each VM’s memory in turn for fair-
ness. The external API exported by the clock is simple: Return a list of pages
(of some maximum size) that have not been accessed in some time.

In OSes running on bare metal, the R/M bits on page-table entries are typi-
cally updated by the processor. Xen structures the P2M map exactly like the
page tables used by the hardware. However, since the processor does not
actually use the P2M map as a page table, the R/M bits are not updated au-
tomatically. We modify Xen’s shadow page table code to set these bits when
creating readable or writable page mappings. Unlike conventional operat-
ing systems, where there may be multiple sets of page tables that refer to the
same set of pages, in Xen there is only one P2M map per domain. Hence,
each guest page corresponds unambiguously to one P2M entry and one set
of R/M bits.

real-World applications

We now present the performance of Difference Engine on a variety of
workloads. We seek to answer two questions. First, how effective are the
memory-saving mechanisms at reducing memory usage for real-world appli-
cations? Second, what is the impact of those memory-sharing mechanisms
on system performance? Since the degree of possible sharing depends on

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 29

the software configuration, we consider several different cases of application
mixes.

To put our numbers in perspective, we conduct head-to-head comparisons
with VMware ESX Server for three different workload mixes. We run ESX
Server 3.0.1 build 32039 on a Dell PowerEdge 1950 system. Note that even
though this system has two 2.3-GHz Intel Xeon processors, our VMware
license limits our usage to a single CPU. We therefore restrict Xen (hence,
Difference Engine) to use a single CPU for fairness. We also ensure that the
OS images used with ESX match those used with Xen, especially the file
system and disk layout. Note that we are only concerned with the effective-
ness of the memory sharing mechanism, not in comparing the application
performance across the two hypervisors. Further, we configure ESX to use
its most aggressive page sharing settings, in which it scans 10,000 pages/sec-
ond (compared to its default of 200); we configure Difference Engine simi-
larly.

F i g u r e 2 : F O u r i d e n t i c A L V m s e x e c u t e d b e n c h . F O r s u c h
h O m O g e n e O u s w O r k L O A d s , b O t h d i F F e r e n c e e n g i n e A n d e s x
e V e n t u A L Ly y i e L d s i m i L A r s A V i n g s , b u t d e e x t r A c t s m O r e
s A V i n g s w h i L e t h e b e n c h m A r k i s i n p r O g r e s s .

In our first set of benchmarks, we test the base scenario where all VMs on
a machine run the same OS and applications. This scenario is common in
cluster-based systems where several services are replicated to provide fault
tolerance or load balancing. Our expectation is that significant memory sav-
ings are available and that most of the savings will come from page sharing.
The graphs shown in Figures 2–4 break out the contributions in Difference
Engine by page compression (the least), patching, and page sharing (the
most) against page sharing in ESX Server.

We set up four 512-MB virtual machines running Debian 3.1. Each VM ex-
ecutes dbench for 10 minutes followed by a stabilization period of 20 min-
utes. Figure 2 shows the amount of memory saved as a function of time.
First, note that eventually both ESX and Difference Engine reclaim roughly
the same amount of memory (with the graph for ESX plateauing beyond
1,200 seconds). However, while dbench is executing, Difference Engine de-
livers approximately 1.5 times the memory savings achieved by ESX. As be-
fore, the bulk of Difference Engine savings comes from page sharing for the
homogeneous workload case.

We used two different sets of guests VMs for testing heterogeneous performance.

MIXED-1: Windows XP SP1 hosting RUBiS; Debian 3.1 compiling the ■■

Linux kernel; Slackware 10.2 compiling Vim 7.0 followed by a run of the
lmbench benchmark.

30 ; LO G I N : vO L . 3 4, N O. 2

MIXED-2: Windows XP SP1 running Apache 2.2.8 hosting approximately ■■

32,000 static Web pages crawled from Wikipedia, with httperf running
on a separate machine requesting these pages; Debian 3.1 running the
SysBench database benchmark using 10 threads to issue 100,000 requests;
Slackware 10.2 running dbench with 10 clients for six minutes followed by
a run of the IOZone benchmark.

Figures 3 and 4 show the memory savings as a function of time for the two
heterogeneous workloads, MIXED-1 and MIXED-2. We make the following
observations. First, in steady state, Difference Engine delivers a factor of 1.6
to 2.5 more memory savings than ESX. For instance, for the MIXED-2 work-
load, Difference Engine could host the three VMs allocated 512 MB of physi-
cal memory each in approximately 760 MB of machine memory; ESX would
require roughly 1100 MB of machine memory. The remaining, significant,
savings come from patching and compression. And these savings come at a
small cost. The baseline configuration is regular Xen without Difference En-
gine. In all cases, performance overhead of Difference Engine is within 7%
of the baseline. For the same workload, we find that performance under ESX
with aggressive page sharing is also within 5% of the ESX baseline with no
page sharing.

F i g u r e 3 : m e m O r y s A V i n g s F O r m i x e d - 1 .
d i F F e r e n c e e n g i n e s A V e s u p t O 4 5 % m O r e
m e m O r y t h A n e s x .

F i g u r e 4 : m e m O r y s A V i n g s F O r m i x e d - 2 .
d i F F e r e n c e e n g i n e s A V e s A L m O s t t w i c e A s
m u c h m e m O r y A s e s x .

; LO G I N : A pr I L 20 0 9 d I FFE rE N CE E N G I N E 31

conclusion

One of the primary bottlenecks to higher degrees of virtual machine multi-
plexing is main memory. Earlier work shows that substantial memory sav-
ings are available from harvesting identical pages across virtual machines
when running homogeneous workloads. The premise of this work is that
there are significant additional memory savings available from locating and
patching similar pages and in-memory page compression. We present the
design and evaluation of Difference Engine to demonstrate the potential
memory savings available from leveraging a combination of whole page shar-
ing, page patching, and compression. We discuss our experience addressing
a number of technical challenges, including algorithms to quickly identify
candidate pages for patching, demand paging to support oversubscription of
total assigned physical memory, and a clock mechanism to identify appro-
priate target machine pages for sharing, patching, compression, and paging.
Our performance evaluation shows that Difference Engine delivers an addi-
tional factor of 1.6 to 2.5 more memory savings than VMware ESX Server for
a variety of workloads, with minimal performance overhead. Difference En-
gine mechanisms might also be used to improve single OS memory manage-
ment; we leave such exploration to future work.

acknoWLedgMenTS

We would like to particularly thank Rik Farrow for crafting a condensed
draft of this article from our conference paper. In the course of the project,
we also received invaluable assistance from a number of people at VMware.
We would like to thank Carl Waldspurger, Jennifer Anderson, and Hemant
Gaidhani, and the Performance Benchmark group for feedback and discus-
sions on the performance of ESX server. Also, special thanks are owed to
Kiran Tati for assisting with ESX setup and monitoring and to Emil Sit for
providing insightful feedback on the paper. Finally, we would like to thank
Michael Mitzenmacher for his assistance with min-wise hashing, our shep-
herd Fred Douglis for his insightful feedback and support, and the anon-
ymous OSDI ’08 reviewers for their valuable comments. This work was
supported in part by NSF CSR-PDOS Grant No. CNS-0615392, the UCSD
Center for Networked Systems (CNS), and UC Discovery Grant 07-10237.
Vrable was supported in part by an NSF Graduate Research Fellowship.

referenceS

[1] D. Gupta, S. Lee, M. Vrable, S. Savage, A.C. Snoeren, G. Varghese, G.M.
Voelker, and A. Vahdat, “Difference Engine: Harnessing Memory Redun-
dancy in Virtual Machines,” Proceedings of OSDI ’08: http://www.usenix.org/
events/osdi08/tech/full_papers/gupta/gupta_html/.

[2] C.A. Waldspurger, “Memory Resource Management in VMware ESX
Server,” Proceedings of OSDI ’02: http://www.usenix.org/publications/library/
proceedings/osdi02/tech/waldspurger.html.

[3] P.R. Wilson, S.F. Kaplan, and Y. Smaragdakis, “The Case for Compressed
Caching in Virtual Memory Systems,” Proceedings of the 1999 USENIX Annual
Technical Conference: http://www.usenix.org/publications/library/proceedings/
usenix99/full_papers/wilson/wilson_html/.

[4] A.S. Tanenbaum, Modern Operating Systems (Englewood Cliffs, NJ: Pren-
tice Hall, 2007).

