
66  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS

Both dependence on open source and adversary activity around open
source are widespread and growing, but the dynamic pattern of use
requires new means to estimate if not bound the security implica-

tions. In April and May 2014, every security writer has talked about whether
it is indeed true that with enough eyeballs, all bugs are shallow. We won’t
revisit that topic because there may be no minds left to change. Unarguably:

◆◆ Dependence on open source is growing in volume and variety.

◆◆ Adversary interest tracks installed base.

◆◆ Multiple levels of abstraction add noise to remediation needs.

We begin with two open source examples.

Apache Struts CVE-2013-2251, July 6, 2013 - CVSS v2 9.3
Apache Struts is one of the most popular and widely depended upon open source projects
in the world. As such, when this highly exploitable vulnerability was discovered, it was
promptly used to compromise large swaths of the financial services sector. While Heartbleed
(see below) got full media frenzy, many affected by 2013-2251 learned of the problem from
FBI victim notifications under 42 U.S.C. § 10607. The FS-ISAC issued guidance [1] telling
institutions (read, victims) to scrutinize the security of third-party and open source compo-
nents throughout their life cycle of use. It is not noteworthy that an open source project could
have a severe vulnerability; what is of note is that this flaw went undetected for at least seven
years (if not a lot longer from WebWork 2/pre-Struts 2 code base)—an existence proof that
well-vetted code still needs a backup plan.

OpenSSL (Heartbleed) CVE-2014-0160, April 7, 2014 - CVSS v2 5.0
The Heartbleed vulnerability in OpenSSL garnered tremendous media and attacker activity
this past April. While only scored with a CVSS of 5.0, it is a “5 with the power of a 10” since
sniffing usernames, passwords, and SSL Certificates provides stepping stones to far greater
impact. In contrast to the Struts bug above, this flaw was introduced only two years prior, but
it, too, went unnoticed by many eyeballs—it was found by bench analysis [2].

Dependence on Open Source Is Growing
Sonatype, home to author Corman, serves as custodian to Central Repository, the largest
parts warehouse in the world for open source components. At the macro level, open source
consumption is exploding in Web applications, mobility, cloud, etc., driven in part by increas-
ingly favorable economics. Even (risk averse, highly regulated) government and financial
sectors, which previously resisted “code of unknown origin/quality/security,” have begun
relaxing their resistance. According to both Gartner surveys and Sonatype application
analysis, 90+% of modern applications are not so much written as assembled from third-
party building blocks. It is the open source building blocks that are taking the field, and not
just for commodity applications (see Figure 1).

Almost Too Big to Fail
D A N G E E R A N D J O S H U A C O R M A N

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc. 
dan@geer.org

Joshua Corman is the chief
technology officer for Sonatype.
Previously, Corman served
as a security researcher
and strategist at Akamai

Technologies, The 451 Group, and IBM Internet
Security Systems. A respected innovator, he
co-founded Rugged Software and I Am the
Cavalry to encourage new security approaches
in response to the world’s increasing
dependence on digital infrastructure. He is
also an adjunct faculty for Carnegie Mellon’s
Heinze College, IANS Research, and a Fellow
at the Ponemon Institute. Josh received his
bachelor’s degree in philosophy, graduating
summa cum laude, from the University of New
Hampshire. joshcorman@gmail.com

mailto:dan@geer.org

www.usenix.org AU G U S T 20 14 VO L . 3 9, N O. 4 67

COLUMNS
Almost Too Big to Fail

Adversary Interest in Open Source Is Growing
Adversary interest tracks component prevalence. The preva-
lence of open source has grown, ergo so has adversary interest [3].
There are several equivalent ways to characterize that:

◆◆ Payoff: “That’s where the money is.”

◆◆ Cost-effective leverage: Unless you are engaged in one-off
targeting, you go after the components that are most depended
upon (Struts, OpenSSL, etc.).

◆◆ Accessibility: Obscurity may occasionally contribute to security,
but there is nothing obscure about an open source code pool.

Figure 2 shows the pattern of vulnerability disclosure in the
Apache Struts project; the vertical axis shows CVSS severity
against the horizontal showing calendar time.

While author Geer has written elsewhere [4] about how CVSS
scores are not the way to steer remediation efforts, Figure 2 does
confirm that there is a mounting interest in cataloging open
source flaws. (See also author Corman’s “HDMoore’s Law” [5].)

Can We Characterize Flaw Response?
Yes, Virginia, all software has flaws, but one might ask whether
we avoid “known bad components” when assembling deliverable
code? Not always; consider:

“Bouncy Castle” CVE-2007-6721, November 10, 2007
CVSS v2 10
The “Legion of the Bouncy Castle Java Cryptography APIs” had
a CVSS worst-case scenario fixed in April of 2008—more than
six years ago. While 2007-6721 is a severe security flaw in a
security-sensitive project, nevertheless the unrepaired, vulner-
able version was requested from Central Repository 4,000 times
in 2013. One can assume it was used in security-related appli-
cations/products, perhaps multiple applications per download
instance.

Similar (disappointing) consumption patterns exist for Struts.
Outside of CVE-2013-2251 compromised organizations, still-
vulnerable versions of Struts 2 continue to remain popular.
Worse, Struts version 1-related artifacts still had over a million
downloads in 2013, despite its April 5, 2013 official End of Life.
In other words, finding and fixing serious flaws in open source
does not mean that the repaired versions are the ones that are
used. Is this an awareness problem, or is it something else?

Readers will recall that Availability (A) is calculated as

 MTBF
A =
 MTBF + MTTR

where MTTR is Mean Time To Repair and MTBF is Mean Time
Between Failures. Availability is thus perfect (100%) if either
the item never fails (MTBF goes to infinity) or the item enjoys
instant recovery (MTTR goes to 0). This is where a distinction
between open and closed source may be operationally relevant:
If the MTBF is a constant, then MTTR is what matters. The
2013 Coverity Scan Report [6] showed comparable defect rates
between open and closed source projects (with a slight qual-
ity advantage for open source projects). If project sizes are also
comparable, then MTBF between open and closed source would
likewise be comparable.

We have less data on MTTR, whether for closed or open source,
but it is our educated guess that (once fixed) open source project
repairs are available earlier than closed source projects because
the latter will have additional packaging and deployment steps.
Open source projects are not responsible for deployment of fixes,
only the availability of fixes, and, even then, there is no forcing
function for making fixes available. In a sense, Heartbleed was
a blessing; it showed us just how widespread one error can be
deployed and just how much widespread use led users to assume
that it must have been thoroughly scrubbed by somebody else
by now.

Figure 1: Open source downloads per year measured in billions Figure 2: Graphing the CVSS severity (1–10) for disclosed Struts vulner-
abilities against the year shows generally increasing severity levels.

68  AU G U S T 20 14 VO L . 3 9, N O. 4 www.usenix.org

COLUMNS
Almost Too Big to Fail

But to base our discussion on knowledge rather than educated
guesses, Sonatype has begun an analysis of the “project integ-
rity” of the open source codebases it hosts. One focus will, in
fact, be MTTR. It is central to the open source domain because
there are unobvious transitive dependencies between and among
open source components. An early analysis of open source proj-
ects with already identified vulnerable dependencies revealed
some troubling behavior. Direct (aka “1-hop”) vulnerable com-
ponent dependencies were only remediated 41% of the time. Put
differently, more than half (59%) of the vulnerable base compo-
nents remain unrepaired. Folding multiple components into your
projects means inheriting not just the components’ functionality
but also their (largely unrepaired) flaws. For the 41% that were
fixed at all, the MTTR was 390 days (median 265 days). Filter-
ing for just CVSS 10s brought the mean of this subset down to
224 days. And this is just for 1-hop dependencies—there is as yet
no mechanism to cause remediated flaws to flow automatically
through the dependency graph, and there may never be.

Making Remediation Possible
In closed source development domains, the command structure
will know who uses what and can thus ascertain what code
trees have to be rippled when a common component is revised.
This is not the case with open source, nor will it be. As Heart-
bleed made clear, open source is in home electronics, medical
devices, industrial controls, etc. The more widespread the use of
a particular open source library, the more common mode failure
among otherwise unrelated product spaces becomes. An auto
manufacturer can recall a particular model, and know that only
that model has the faulty component. There is no feasible equiva-
lent for an open source library. We thus suggest that, just as a jar
of pickles on the grocery shelf must list its ingredients, products
and services that are assembled from open source components
need to provide a bill of materials so that when an open source
component has a vulnerability, downstream users can tell
whether they are affected and whether a particular remediation
is one they need to consume (directly or indirectly). Ingredients
lists would serve as a framework both for remediation and for
further work in security metrics.

To emphasize the concreteness of these issues, embedded sys-
tems are largely assembled from open source components, have
no field upgrade path once deployed, and had build environments
that were not coordinated with source code control. We have
work to do.

References
[1] Financial Services Information Sharing and Analysis
Center, “Appropriate Software Security Control Types for
Third Party Service and Product Providers”: docs.ismgcorp
.com/files/external/WP_FSISAC_Third_Party_Software
_Security_Working_Group.pdf.

[2] F. Berkman, “Researcher Who Discovered Heartbleed Bug
Donates $15K Reward,” The Daily Dot: www.dailydot.com
/news/heartbleed-neel-mehta-freedom-press-foundation
-encryption.

[3] S. Rosenblatt, “Heartburn from Heartbleed Forces Wide-
Ranging Rethink in Open Source World,” CNET: www
.cnet.com/news/heartburn-from-heartbleed-forces-wide
-ranging-rethink-in-open-source-world.

[4] D. Geer and M. Roytman, “Measuring vs. Modeling,”
USENIX ;login:, vol. 38, no. 6 (December 2013): geer.tinho
.net/fgm/fgm.geer.1312.pdf.

[5] J. Corman, “Intro to HDMoore’s Law”: blog
.cognitivedissidents.com/2011/11/01/intro-to-hdmoores-law/.

[6] Coverity Scan, 2013 Open Source Report:
software integrity.coverity.com/rs/coverity/images/2013
-Coverity-Scan-Report.pdf.

