
www.usenix.org	   A p r i l 20 14  Vo l . 3 9, N o. 2  47

Columns

A Pragmatic Guide to Python 3 Adoption
D a v i d B e a z l e y

Believe it or not, it’s been more than five years since Python 3 was
unleashed on the world. At the time of release, common consensus
among Python core developers was that it would probably take about

five years for there to be any significant adoption of Python 3. Now that the
time has passed, usage of Python 3 still remains low. Does the continued
dominance of Python 2 represent a failure on the part of Python 3? Should
porting existing code to Python 3 be a priority for anyone? Does the slow
adoption of Python 3 reflect a failure on the part of the Python developers or
community? Is it something that you should be worried about?

There are no clear answers to any of these questions other than to say that “it’s complicated.”
To be sure, almost any discussion of Python 3 on the Internet can quickly turn into a fiery
debate of finger pointing and whining. Although, to be fair, much of that is coming from
library writers who are trying to make their code work on Python 2 and 3 at the same time—a
very different problem than that faced by most users. In this article, I’m going to try and steer
clear of that and have a pragmatic discussion of how working programmers might approach
the whole Python 3 puzzle.

This article is primary for those who use Python to get actual work done. In other words, I’m
not talking about library and framework authors—if that applies to you and you’re still not
supporting Python 3, stop sitting on the sidelines and get on with it already. No, this article is
for everyone else who simply uses Python and would like to keep using it after the Python 3
transition.

Python 3 Background
If you haven’t been following Python 3 very closely, it helps to review a bit of history. To my
best recollection, the idea of “Python 3” originates back to the year 2000, if not earlier. At
that time, it was merely known as “Python 3000”—a hypothetical future version of Python
(named in honor of Mystery Science Theater 3000) where all of the really hard bugs, design
faults, and pie-in-the-sky ideas would be addressed someday. It was a release reserved for
language changes that couldn’t be made without also breaking the entire universe of existing
code. It was a stock answer that Guido van Rossum could give in a conference talk (e.g., “I’ll
eventually fix that problem in Python 3000”).

Work on an actual Python 3000 version didn’t really begin until much later—perhaps around
2005. This culminated in the eventual release of Python 3.0 in December 2008. A major
aspect of Python 3 is that backward-incompatible changes were made to the core language.
By far, the most visible change is the breakage of the lowly print statement, leading first-time
Python 3 users to type a session similar to this:

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

48    A p r i l 20 14  Vo l . 3 9, N o. 2 	 www.usenix.org

Columns
A Pragmatic Guide to Python 3 Adoption

 >>> print “hello world”

	 File “<stdin>”, line 1

		 print “hello world”

			 ^

SyntaxError: invalid syntax

 >>>

This is easy to fix—simply change the print statement to
print(“hello world”). However, the fact that even the easiest
example breaks causes some developers to grumble and come
away with a bad first impression. In reality, the internal changes
of Python 3 run much deeper than this, but you’re not likely to
encounter them as immediately as with print(). The purpose of
this article isn’t to dwell on Python 3 features, however—they are
widely published [1] and I’ve written about them before [2].

Some Assumptions
If you’re using Python to solve day-to-day problems, I think there
are a few underlying assumptions about software development
that might apply to your work. First, it’s somewhat unlikely that
you’re concerned about supporting every conceivable Python
version. For example, I have Python 2.7 installed on my machine
and I use it for a lot of projects. Although I could enter a time
machine and install Python 2.3 on my system to see if my code
still works with it, I honestly don’t care. Seriously, why would I
spend my time worrying about something like that? Even at large
companies, I find that there is often an “official” Python version
that almost everyone is using. It might not always be the latest
version, but it’s some specific version of the language. People
aren’t wasting their time fooling around with different inter-
preter versions.

I think a similar argument can be made about the choice
between Python 2 and 3. If you’ve made a conscious choice to
work on a project in Python 3, there is really no good reason to
also worry about Python 2. Again, as an application programmer,
why would I do that? If Python 3 works, I’m going to stick with
it and use it. I’ve got better things to be doing with my time than
trying to wrap my brain around different language versions. (To
reiterate, this is not directed at grumpy library writers.)

Related to both of the above points, I also don’t think many
application programmers want to write code that involves weird
hacks and non-idiomatic techniques—specifically, hacks aimed
at making code work on two incompatible versions of the Python
language. For example, if I’m trying to use Python to solve some
pressing problem, I’m mostly just concerned with that problem.
I want my code to be nice and readable—like the code you see in
books and tutorials. I want to be able to understand my own
code when I come back to read it six months later. I don’t want
to be sitting in a code review trying to explain some elaborate
hacky workaround to a theoretical problem involving Python
2/3 compatibility.

Last, but not least, most good programmers are motivated by
a certain sense of laziness. That is, if the code is working fine
already, there has to be a pretty compelling reason to want to
“fix” it. In my experience, porting a code base to a new language
version is just not that compelling. It usually involves a lot of
grunt work and time—something that is often in short supply.
Laziness also has a dark side involving testing. You know how
you hacked up that magic Python data processing script on a Fri-
day afternoon three years ago? Did you write any unit tests for it?
Probably not. Yes, this can be a problem too.

So, with the understanding that you probably just want to use a
single version of Python, you don’t want to write a bunch of weird
hacks, you may not have tests, and you’re already overworked,
let’s jump further into the Python 3 fray.

Starting a New Project? Try Python 3
If you’re starting a brand new project, there is no reason not to
try Python 3 at this point. In fact, it doesn’t even have to be too
significant. For example, if you find yourself needing to write
a few one-off scripts, this is a perfect chance to give Python 3 a
whirl without worrying if it will work in a more mission critical
setting.

Python 3 can be easily installed side-by-side with any existing
Python 2 installation, and it’s okay for both versions to coex-
ist on your machine. Typically, if you install Python 3 on your
system, the python command will run Python 2 and the python3
command will run Python 3. Similarly, if you’ve installed addi-
tional tools such as a package manager (e.g., setuptools, pip, etc.),
you’ll find that the Python 3 version includes “3” in the name. For
example, pip3.

If you rely on third-party libraries, you may be pleasantly sur-
prised at what packages currently work with Python 3. Most
popular packages now provide some kind of Python 3 support.
Although there are still some holdouts, it’s worth your time to try
the experiment of installing the packages you need to see if they
work. From personal experience over the last couple of years, I’ve
encountered very few packages that don’t work with Python 3.

Once you’ve accepted the fact that you’re going to use Python 3
for your new code, the only real obstacle to starting is coming to
terms with the new print() function. Yes, you’re going to screw
that up a few hundred times because you’re used to typing it as a
statement out of habit. However, after a day of coding, adding the
parentheses will become old hat. Next thing you know, you’re a
Python 3 programmer.

What To Do with Your Existing Code?
Knowing what to do with existing code in a Python 3 universe
is a bit more delicate. For example, is migrating your code
something that you should worry about right now? If you don’t

www.usenix.org	   A p r i l 20 14  Vo l . 3 9, N o. 2  49

COLUMNS
A Pragmatic Guide to Python 3 Adoption

migrate, will your existing programs be left behind in the dust-
bin of coding history? If you take the plunge, will all your time be
consumed by fixing bugs due to changes in Python 3 semantics?
Are the third-party libraries used by your application available
in Python 3?

These are all legitimate concerns. Thus, let’s explore some
concrete steps you can take with the assumption that migrating
your code to Python 3 is something you might consider eventu-
ally if it’s not too painful, maybe.

Do Nothing!
Yes, you heard that right. If your programs currently work with
Python 2 and you don’t need any of the new functionality that
Python 3 provides, there’s little harm in doing nothing for now.
There’s often a lot of pragmatic wisdom in the old adage of “if it
ain’t broke, don’t fix it.” In fact, I would go one step further and
suggest that you NOT try to port existing code to Python 3 unless
you’ve first written a few small programs with Python 3 from
scratch.

Currently, Python 2 is considered “end of life” with version 2.7.
However, this doesn’t mean that 2.7 will be unmaintained or
unsupported. It simply means that changes, if any, are reserved
for critical bug fixes, security patches, and similar activity.
Starting in 2015, changes to Python 2.7 will be reserved to
security-only fixes. Beyond that, it is expected that Python 2.7
will enter an extended maintenance mode that might last as long
as another decade (yes, until the year 2025). Although it’s a little
hard to predict anything in technology that remote, it seems safe
to say that Python 2.7 isn’t going away anytime soon. Thus, it’s
perfectly fine to sit back and take it slow for a while.

This long-term maintenance may, in fact, have some upsides.
For one, Python 2.7 is a very capable release with a wide vari-
ety of useful features and library support. Over time, it seems
clear that Python 2.7 will simply become the de facto version of
Python 2 found on most machines and distributions. Thus, if you
need to worry about deploying and maintaining your current code
base, you’ll most likely converge upon only one Python version
that you need to worry about. It’s not unlike the fact that real
programmers are still coding in Fortran 77. It will all be fine.

Start Writing Code in a Modern Style
Even if you’re still using Python 2, there are certain small steps
you can take to start modernizing your code now. For example,
make sure you’re always using new-style classes by inheriting
from object:

class Point(object):

	 def __init__(self, x, y):

		 self.x = x

		 self.y = y

Similarly, make sure you use the modern style of exception han-
dling with the “as” keyword:

try:

	 x = int(val)

except ValueError as exc: # Not: except ValueError, exc:

...

Make sure you use the more modern approaches to certain built-
in operations. For example, sorting data using key functions
instead of the older compare functions:

names = [‘paula’, ‘Dave’, ‘Thomas’, ‘lewis’]

names.sort(lambda n1, n2: cmp(n1.upper(), n2.upper()))	 # OLD

names.sort(key=lambda n: n.upper()) 	 # NEW

Make sure you’re using proper file modes when performing I/O.
For example, using mode ‘t’ for text and mode ‘b’ for binary:

f = open(‘sometext.txt’, ‘rt’)

g = open(‘somebin.bin’, ‘rb’)

These aren’t major changes, but a lot of little details like this
come into play if you’re ever going to make the jump to Python 3
later on. Plus, they are things that you can do now without break-
ing your existing code on Python 2.

Embrace the New Printing
As noted earlier, in Python 3, the print statement turns into a
function:

 >>> print(‘hello’, ‘world’)

hello world

>>>

You can turn this feature on in Python 2 by including the fol-
lowing statement at the top of each file that uses print() as a
function:

 from __future__ import print_function

Although it’s not much of a change, mistakes with print will
almost certainly be the most annoying thing encountered if you
switch Python versions. It’s not that the new print function is
any harder to type or work with—it’s just that you’re not used to
typing it. As such, you’ll repeatedly make mistakes with it for
some time. In my case, I even found myself repeatedly typing
printf() in my programs as some kind of muscle-memory hold-
over from C programming.

Run Code with the -3 Option
Python 2.7 has a command line switch -3 that can warn you
about more serious and subtle matters of Python 3 compatibility.
If you enable it, you’ll get warning messages about your usage of
incompatible features. For example:

50    A p r i l 20 14  Vo l . 3 9, N o. 2 	 www.usenix.org

Columns
A Pragmatic Guide to Python 3 Adoption

 bash % python2.7 -3

>>> names = [‘Paula’, ‘Dave’, ‘Thomas’, ‘lewis’]

>>> names.sort(lambda n1, n2: cmp(n1.upper(), n2.upper()))

__main__:1: DeprecationWarning: the cmp argument is not

supported in 3.x

>>>

With this option, you can take steps to find an alternative
implementation that eliminates the warning. Chances are, it will
improve the quality of your Python 2 code, so there are really no
downsides.

Future Built-ins
A number of built-in functions change their behavior in Python
3. For example, zip() returns an iterator instead of a list. You can
include the following statement in your program to turn on some
of these features:

 from future_builtins import *

If your program still works afterwards, there’s a pretty good
chance it will continue to work in Python 3. So it’s usually a
useful idea to try this experiment and see if anything breaks.

The Unicode Apocalypse
By far, the hardest problem in modernizing code for Python 3
concerns Unicode [3]. In Python 3, all strings are Unicode. More-
over, automatic conversions between Unicode and byte strings
are strictly forbidden. For example:

>>> # Python 2 (works)

>>> ‘Hello’ + u’World’

u’HelloWorld’

>>>

>>> # Python 3 (fails)

>>> b’Hello’ + u’World’

Traceback (most recent call last):

	 File “<stdin>”, line 1, in

TypeError: can’t concat bytes to str

>>>

Python 2 programs are often extremely sloppy in their treat-
ment of Unicode and bytes, interchanging them freely. Even if
you don’t think that you’re using Unicode, it still might show up
in your program. For example, if you’re working with databases,
JSON, XML, or anything else that’s similar, Unicode almost
always creeps into your program.

To be completely correct about treatment of Unicode, you need
to make strict use of the encode() and decode() methods in any
conversions between bytes and Unicode. For example:

>>> ‘Hello’.decode(‘utf-8’) + u’World’	 # Result is Unicode

u’HelloWorld’

>>> ‘Hello’ + u’World’.encode(‘utf-8’)	 # Result is bytes

‘HelloWorld’

>>>

However, it’s really a bit more nuanced than this. If you know
that you’re working with proper text, you can probably ignore
all of these explicit conversions and just let Python 2 implicitly
convert as it does now—your code will work fine when ported
to Python 3. It’s the case in which you know that you’re work-
ing with byte-oriented non-text data that things get tricky
(e.g., images, videos, network protocols, and so forth).

In particular, you need to be wary of any “text” operation being
applied to byte data. For example, suppose you had some code
like this:

f = open(‘data.bin’, ‘rb’)	 # File in binary mode

data = f.read(32)	 # Read some data

parts = data.split(‘,’)	 # Split into parts

Here, the problem concerns the split() operation. Is it splitting
on a text string or is it splitting on a byte string? If you try the
above example in Python 2 it works, but if you try it in Python 3 it
crashes. The reason it crashes is that the data.split(‘,’) opera-
tion is mixing bytes and Unicode together. You would either need
to change it to bytes:

parts = data.split(b’,’)

or you would need to decode the data into text:

parts = data.decode(‘utf-8’).split(‘,’)

Either way, it requires careful attention on your part. In addi-
tion to core operations, you also must focus your attention on
the edges of your program and, in particular, on its use of I/O. If
you are performing any kind of operation on files or the network,
you need to pay careful attention to the distinction between
bytes and Unicode. For example, if you’re reading from a network
socket, that data is always going to arrive as uninterpreted bytes.
To convert it to text, you need to explicitly decode it according to
a known encoding. For example:

data = sock.recv(8192)

text = data.decode(‘ascii’)

import urllib

u = urllib.urlopen(‘http://www.python.org’)

text = u.read().decode(‘utf-8’)

Likewise, if you’re writing text out to the network, you need to
encode it:

text = ‘Hello World’

sock.send(text.encode(‘ascii’))

www.usenix.org	   A p r i l 20 14  Vo l . 3 9, N o. 2  51

COLUMNS
A Pragmatic Guide to Python 3 Adoption

Again, Python 2 is very sloppy in its treatment of bytes—you can
write a lot of code that never performs these steps. However, if
you move that code to Python 3, you’ll find that it breaks.

Even if you don’t port, resolving potential problems with Unicode
is often beneficial even in a Python 2 codebase. At the very least,
you’ll find yourself resolving a lot of mysterious UnicodeError
exceptions. Your code will probably be a bit more reliable. So it’s
a good idea.

Taking the Plunge
Assuming that you’ve taken all of these steps of modernizing
code, paying careful attention to Unicode and I/O, adopting the
print() function, and so forth, you might actually be ready to
attempt a Python 3 port, maybe.

Keep in mind that there are still minor things that you might
need to fix. For example, certain library modules get renamed
and the behavior of certain built-in operations may vary slightly.
However, you can try running your program through the 2to3
tool and see what happens. If you haven’t used 2to3, it simply
identifies the parts of your code that will have to be modified
to work on Python 3. You can either use its output as a guide for
making the changes yourself, or you can instruct it to automati-
cally rewrite your code for you. If you’re lucky, adapting your
code to Python 3 may be much less work than you thought.

What About Compatibility Libraries?
If you do a bit a research, you might come across some compat-
ibility libraries that aim to make code compatible with both
Python 2 and 3 (e.g., “six,” “python-modernize,” etc.). As an
application programmer, I’m somewhat reluctant to recommend
the use of such libraries. In part, this is because they sometimes
translate code into a form that is not at all idiomatic or easy to
understand. They also might introduce new library dependen-
cies. For library writers who are trying to support a wide range of
Python versions, such tools can be helpful. However, if you’re just
trying to use Python as a normal programmer, it’s often best to
just keep your code simple. It’s okay to write code that only works
with one Python version.

References
[1] Nick Coghlan’s “Python 3 Q&A” (http://ncoghlan
-devs-python-notes.readthedocs.org/en/latest/python3
/questions_and_answers.html) is a great read concerning
the status of Python 3 along with its goals.

[2] David Beazley, “Three Years of Python 3,” ;login:, vol. 37,
no. 1, February 2012: beazley12-02_0.pdf.

[3] For the purposes of modernizing code, I recommend Ned
Batchelder’s “Pragmatic Unicode” presentation (http://
nedbatchelder.com/blog/201203/pragmatic_unicode.html)
for details on sorting out Unicode issues in Python 2 and
preparing your mind for work in Python 3.

xkcd xkcd.com

http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
https://www.usenix.org/system/files/login/articles/beazley12-02_0.pdf

