
56  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns

Python: -m Is for Main
D a v i D B E a z l E y

A s Python programmers know, Python doesn’t really have a notion of
a main() function like compiled languages such as C or Java. That
is, there’s no dedicated function that you define as the entry point to

your program. Instead, there is the concept of a “main” program module. The
“main” module holds the contents of whatever file you tell Python to execute.
For example, if you type this,

bash % python spam.py

then the contents of spam.py become the main module. For scripts, you might also see the
classic #! convention used to make them executable:

#!/usr/bin/env python

spam.py

...

Finally, a common idiom found in most code meant to run as a main program is a check that
looks like this:

spam.py

...

if __name__ == ‘__main__’:

 # Main program

 ...

__name__ is a special variable that always holds the name of the module and is set to
‘__main__’ when executing as a main program. The primary reason for enclosing the main
program in such a check is that it allows you to import the file as a library module without
triggering main program execution. This can be useful for debugging, writing unit tests, etc.

For many programmers, this is the final word when it comes to writing scripts. I’ll admit that
for most of the past 15 years, I’ve never done much more than this or given the idea of a main
script much thought. Naturally, there is more than meets the eye, otherwise, I wouldn’t be
writing about it. Let’s dig a bit deeper.

The -m Option
Normally when you run a program, you simply give Python the name of the file that you want
to execute; however, a less obvious way to specify the file is as a module name using -m. For
example:

bash % python -m spam

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 57

COLUMNS
Python: -m Is for Main

Unlike a simple file name, the useful feature of -m is that it
searches for spam on the Python path (sys.path). Although this
feature is a minor change, it means that you don’t actually have
to know where spam.py is located to run it—spam.py merely
must be located somewhere where Python can import it.

Once you discover -m, you’ll quickly find that there is a wide
range of built-in modules and tools that execute in this way. For
example, if you want to run a simple Web server on a directory of
files, do this:

bash % python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

If you want to run a program under the debugger, type this:

bash % python -m pdb yourprogram.py

Or to profile a program:

bash % python -m cProfile yourprogram.py

Or to time the execution of simple statements:

bash % python -m timeit --setup=”import math” “math.cos(2)”

10000000 loops, best of 3: 0.125 usec per loop

bash %

Indeed, you’ll find that there are a lot of useful things that live
behind the -m option. Your application can use it, too. As it turns
out, there are several benefits to doing so.

Organizing Large Applications
Almost any non-trivial Python program consists of both library
modules and application-level scripts. When you’re starting
out, putting all of your code in a single directory and not worry-
ing too much about code organization is often fine; however, as
things start to grow, you’ll want to think about having a better
organization than a simple directory with a bunch of files in
it. This is especially so if you’re going to start giving your code
away to others.

For most projects, putting library modules into a package struc-
ture is standard practice. You pick a unique top-level name for
your project and organize code as a hierarchy. For example, if the
name of your project was “diddy,” you might make a directory
like this:

diddy/

 __init__.py

 foo.py

 bar.py

 ...

If you’ve never seen __init__.py before, it’s required to mark a
directory as being part of a package. The file can be empty, but
it must be there for imports to work. Application scripts would

then be written to import modules out of this package using
statements such as this:

rundiddy.py

An application script

from diddy import foo

from diddy import bar

...

if __name__ == ‘__main__’:

 # Main program

 ...

This approach immediately presents some problems, though. In
order for a script like this to work, the related package needs to
be properly installed on the Python path (sys.path). This might
not be a problem if you’re working by yourself, but if you hand the
script to a co-worker, it’s not going to work unless she also has
the associated libraries installed somewhere. As an alternative,
you might consider putting the script in a common location (e.g.,
/usr/local/bin) and telling your co-workers to use that; however,
you’ve now placed yourself in the role of a system administra-
tor as you try to manage the script, the installed libraries, and
everything else associated with your application.

All of these problems are caused by the fact that the script and
its dependent package are placed in separate locations. As such,
you need to worry about path settings, version dependencies,
and all sorts of other installation issues. For example, how do
you make sure that your script actually uses the right version of
its dependent library package? I rarely run into Python coders
who haven’t ended up creating a big sys.path hacking mess for
themselves trying to deal with things like this at one point or
another; it can also cause all sorts of weird problems during code
development. For example, you’re probably not going to get the
last few hours of debugging back after you realize that the reason
your code is failing is that it was importing a version of a library
different from the one you expected.

In-Package Scripts
One nice feature of the -m option is that it allows you to easily
create “in-package” scripts. These are scripts that live in the
same package hierarchy as the library files on which they rely.
For example, you can simply move the rundiddy.py file inside the
package like this:

diddy/

 __init__.py

 foo.py

 bar.py

 rundiddy.py

 ...

58  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Columns
Python: -m Is for Main

Once a script lives in a package, you can additionally modify it to
use package-relative imports like this:

rundiddy.py

An application script

from . import foo

from . import bar

...

If you’ve never seen a package-relative import before, the syn-
tax from . import foo means load foo from the same directory.
Similarly, a statement such as from .. import foo loads a module
from the parent directory whereas from ..utils import foo loads a
module from the directory ../util relative to the module doing the
import. I must stress that this syntax only works within a proper
package—you can’t use it in arbitrary Python modules. Addition-
ally, you’re not allowed to write an import that “escapes” the
top-level package directory.

One nice thing about package-relative imports is that you
no longer need to hard-code the top-level package name into
the source, meaning that renaming the top-level package to
something else is easy. For example, if you need to have two
different versions of your package installed at the same time,
rename one of them (e.g., “olddiddy”). All of the imports within
the package will still work if they’ve been written using the
package-relative style.

To run an in-package script, you simply type python -m diddy.
rundiddy. If you’ve done things correctly, the script will simply
find all of its correct library files, with no path hacking or instal-
lation headaches.

If you’re put off by having to type python -m diddy.rundiddy,
you can change the name of the rundiddy.py file to __main__.
py. You’ll then be able to type python -m diddy and it will simply
run the __main__.py file for you. (As an aside, few programmers
realize that any directory of code with a __main__.py file can be
directly executed by Python.)

Who Cares?
The main benefit of moving scripts inside a package is that
they effectively allow you to create a kind of code bundle where
everything is self-contained. For example, if you wanted to give
your application to a co-worker, you could simply hand them the
top-level directory along with instructions on how to run the
code (using -m). If you’ve done everything right, the code will
simply “work” without ever having to fiddle with path settings,
installing code into the user’s Python installation, or anything
else. During software development, this is actually a really use-
ful thing—you can hand someone your code and have him try it
out without requiring him to muck around with his local Python
setup. Similarly, if you’re working on a new version of code, you
can do it in your own directory without ever worrying about pre-

viously installed versions getting in the way. Again, the key thing
that makes this possible is the fact that everything is bundled
together in one place.

I’ve found this approach to be useful in writing various
application-level tools. For example, consider this hypothetical
application structure:

diddy/

 __init__.py

 foo.py

 bar.py

 __main__.py

 server/

 __init__.py

 httpserver.py

 rpc.py

 message.py

 __main__.py

 worker/

 __init__.py

 queues.py

 request.py

 __main__.py

Within this directory, there are actually three separate “applica-
tions” that are executed using -m. For example:

bash % python -m diddy # Executes diddy/__main__.py

bash % python -m diddy.server # Executes diddy/server/__

main__.py

bash % python -m diddy.worker # Executes diddy/worker/__

main__.py

Again, it’s a self-contained bundle of code. There are no scripts
to install and no path hacking to be had other than making sure
the top level “diddy” directory is available when you run Python
(it could be in the current working directory).

Application to Testing
Another place where I’ve found the package approach to be
useful is in unit testing. A problem I always seem to face is
figuring out how to make my unit tests use the correct version
of code. That might sound silly, but I can’t count the number
of times I’ve run some tests only to find out that they executed
using a completely different version of the code than the one I
was working on due to some kind of sys.path issue. In response
to such problems, you might be inclined to hack sys.path in
some manner. For example, in one of my projects, if you look at
the testing files, the first thing the tests do is hack sys.path to
make sure the tests run using the right code base. Frankly, it’s
clumsy and a bit embarrassing.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 59

COLUMNS
Python: -m Is for Main

As an alternative, you can move the tests inside the package and
use the -m option to run them. For example, consider a project
with this file structure:

diddy/

 __init__.py

 foo.py

 bar.py

 tests/

 __init__.py

 foo.py

 bar.py

 __main__.py

In this organization, the tests directory mirrors the structure of
the package itself. Each testing file is a stand-alone executable
that looks like this:

tests/foo.py

import unittest

from .. import foo

class TestSomething(unittest.TestCase):

 def test_example(self):

 result = foo.do_something()

 self.assertEqual(result, expected_result)

 # More tests follow

 ...

if __name__ == ‘__main__’:

 unittest.main()

To run a single testing file, you simply type a command like this:

bash % python -m diddy.tests.foo

.....

--

Ran 5 tests in 0.295s

OK

bash %

I might reserve the tests/__main__.py for running all of the tests
at once. For example, a simple approach is as follows:

tests/__main__.py

from .foo import *

from .bar import *

if __name__ == ‘__main__’:

 unittest.main()

Now, tests can be run like this:

bash % python -m diddy.tests

.........

--

Ran 9 tests in 0.423s

OK

bash %

Saying whether such approach would appeal to hard-core testing
experts is difficult; some might argue that the tests should be
contained in their own dedicated directory separate from the
package itself. To be sure, this might not scale for a tremendously
huge project. Nevertheless, I’ve often found this approach to
be simple, reliable, and quite effective in medium-scale proj-
ects. Part of the appeal is that it works without having to fiddle
around with the environment or a complex set of extra tools. Of
course, your mileage might vary.

Closing Words
Every so often a feature of Python comes along that really
catches my fancy. The -m option definitely falls into that cat-
egory as I find myself using it more and more. Honestly, the main
appeal of it is how it allows my scripts and library code to be
bundled together into a single cohesive package. As such, it saves
me a lot of time where I would have to be fiddling around with
path settings and installation issues. No, life is too short for that.
Instead, put everything in a package and use -m. You’ll thank
yourself later.

