
www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 59

COLUMNS

Python: With That
Five Easy Context Managers

D A V I D B E A Z L E Y

A t the last PyCon conference, Raymond Hettinger gave a keynote talk
in which he noted that context managers might be one of Python’s
most powerful yet underappreciated features. In case you’re new to

the concept of a context manager, we’re talking about the with statement that
was added to Python 2.6. You’ll most often see it used in the context of file
I/O. For instance, this is the “modern” style of reading a file line-by-line:

with open(‘data.csv’) as f:

 for line in f:

 # Do something with line

 ...

f automatically closed here

In this example, the variable f holds an open file instance that is automatically closed when
control leaves the block of statements under the with statement. Thus, you don’t have to
invoke f.close() explicitly when you use the with statement as shown. If you’re not quite
convinced, you can also try an interactive example:

>>> with open(‘/etc/passwd’) as f:

... print(f)

...

<open file ‘/etc/passwd’, mode ‘r’ at 0x2b4180>

>>> print(f)

<closed file ‘/etc/passwd’, mode ‘r’ at 0x2b4180>

>>>

With that in mind, seeing how something so minor could be one of the language’s most power-
ful features as claimed might be a bit of a stretch. So, in this article, we’ll simply take a look at
some examples involving context managers and see that so much more is possible.

Make a Sandwich
What is a context manager anyways? To steal an analogy from Raymond Hettinger, a context
manager is kind of like the slices of bread that make up a sandwich. That is, you have a top
and a bottom piece, in-between which you put some kind of filling. The choice of filling is
immaterial—the bread doesn’t pass judgment on your dubious choice to make a sandwich
filled with peanut-butter, jelly, and tuna.

In terms of programming, a context manager allows you to write code that wraps around
the execution of a block of statements. To make it work, objects must implement a specific
protocol, as shown here:

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
dave@dabeaz.com

60  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
Python: With That: Five Easy Context Managers

class Manager(object):

 def __enter__(self):

 print(‘Entering’)

 return “SomeValue” # Can return anything

 def __exit__(self, e_ty, e_val, e_tb):

 if e_ty is not None:

 print(‘exception %s occurred’ % e_ty)

 print(‘Exiting’)

Before proceeding, try the code yourself:

>>> m = Manager()

>>> with m as val:

... print(‘Hello World’)

... print(val)

...

Entering

Hello World

SomeValue

Exiting

>>>

Notice how the “Entering” and “Exiting” messages get wrapped
around the statements under the with. Also observe how the
value returned by the __enter__() method is placed into the
variable name given with the optional as specifier. Now, try an
example with an error:

>>> with m:

... print(‘About to die’)

... x = int(‘not a number’)

...

Entering

About to die

exception <class ‘ValueError’> occurred

Exiting

Traceback (most recent call last):

 File “<stdin>”, line 3, in

ValueError: invalid literal for int() with base 10: ‘not a number’

>>>

Here, carefully observe that the __exit__() method was invoked
and presented with the type, value, and traceback of the pending
exception. This occurred prior to the traceback being generated.

You can make any object work as a context manager by imple-
menting the __enter__() and __exit__() methods as shown;
however, the contextlib library provides a decorator that can also
be used to write context managers in the form of a simple genera-
tor function. For example:

from contextlib import contextmanager

@contextmanager

def manager():

 # Everything before yield is part of __enter__

 print(“Entering”)

 try:

 yield “SomeValue”

 # Everything beyond the yield is part of __exit__

 except Exception as e:

 print(“An error occurred: %s” % e)

 raise

 else:

 print(“No errors occurred”)

If you try the above function, you’ll see that it works in the same
way.

>>> with manager() as val:

... print(“Hello World”)

... print(val)

...

Entering

Hello World

SomeValue

No errors occurred

>>>

Sandwiches Everywhere!
Once you’ve seen your first sandwich, you’ll quickly realize that
they are everywhere! Consider some of the following common
programming patterns:

File I/O

f = open(‘somefile’)

...

f.close()

Temporary files/directories

name = mktemp()

...

remove(name)

Timing

start_time = time()

...

end_time = time()

Locks (threads)

lock.acquire()

...

lock.release()

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 61

COLUMNS
Python: With That: Five Easy Context Managers

Publish-subscribe

channel.subscribe(recipient)

...

channel.unsubscribe(recipient)

Database transactions

cur = db.cursor()

...

db.commit()

Indeed, the same pattern repeats itself over and over again in all
sorts of real-world code. In fact, any time you find yourself work-
ing with code that follows this general pattern, consider the use
of a context manager instead. Indeed, many of Python’s built-in
objects already support it. For example:

File I/O

with open(‘somefile’) as f:

 ...

Temporary files

from tempfile import NamedTemporaryFile

with NamedTemporaryFile() as f:

 ...

Locks

lock = threading.Lock()

with lock:

 ...

The main benefit of using the context-manager version is that
it more precisely defines your usage of some resource and is less
error prone should you forget to perform the final step (e.g., clos-
ing a file, releasing a lock, etc.).

Making Your Own Managers
Although it’s probably most common to use the with statement
with existing objects in the library, you shouldn’t shy away from
making your own context managers. In fact, it’s pretty easy to
write custom context manager code.

The remainder of this article simply presents some different
examples of custom context managers in action. It turns out that
they can be used for so much more than simple resource manage-
ment if you use your imagination. The examples are presented
with little in the way of discussion, so you’ll need to enter the
code and play around with them yourself.

Temporary Directories with Automatic Deletion
Sometimes you need to create a temporary directory to perform
a bunch of file operations. Here’s a context manager that does
just that, but it takes care of destroying the directory contents
when done:

import tempfile

import shutil

from contextlib import contextmanager

@contextmanager

def tempdir():

 name = tempfile.mkdtemp()

 try:

 yield name

 finally:

 shutil.rmtree(name)

To use it, you would write code like this:

with tempdir() as dirname:

 # Create files and perform operations

 filename = os.path.join(dirname, ‘example.txt’)

 with open(filename, ‘w’) as f:

 f.write(‘Hello World\n’)

 ...

dirname (and all contents) automatically deleted here

Ignoring Exceptions
Sometimes you just want to ignore an exception. Traditionally,
you might write code like this:

try:

 ...

except SomeError:

 pass

However, here’s a context manager that allows you to reduce it
all to one line:

@contextmanager

def ignore(exc):

 try:

 yield

 except exc:

 pass

Example use. Parse data and ignore bad conversions

records = []

for row in lines:

 with ignore(ValueError):

 record = (int(row[0]), int(row[1]), float(row[2]))

 records.append(record)

With a few minor modifications, you could adapt this code to
perform other kinds of exception handling actions: for example,
routing exceptions to a log file, or simply packaging up a com-
plex exception handling block into a simple function that can be
 easily reused as needed.

62  O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

COLUMNS
Python: With That: Five Easy Context Managers

Making a Stopwatch
Here’s an object that implements a simple stopwatch:

import time

class Timer(object):

 def __init__(self):

 self.elapsed = 0.0

 self._start = None

 def __enter__(self):

 assert self._start is None, “Timer already started”

 self._start = time.time()

 def __exit__(self, e_ty, e_val, e_tb):

 assert self._start is not None, “Timer not started”

 end = time.time()

 self.elapsed += end - self._start

 self._start = None

 def reset(self):

 self.__init__()

To use the timer, you simply use the with statement to indicate
the operations you want timed. For example:

Example use

my_timer = Timer()

...

with my_timer:

 statement

 statement

 ...

...

print(“Total time: %s” % my_timer.elapsed)

Deadlock Avoidance
A common problem in threaded programs is deadlock arising
from the use of too many locks at once. Here is a context man-
ager that implements a simple deadlock avoidance scheme that
can be used to acquire multiple locks at once. It works by simply
forcing multiple locks always to be acquired in ascending order
of their object IDs.

from contextlib import contextmanager

@contextmanager

def acquire(*locks):

 sorted_locks = sorted(locks, key=id)

 for lock in sorted_locks:

 lock.acquire()

 try:

 yield

 finally:

 for lock in reversed(sorted_locks):

 lock.release()

This one might take a bit of pondering, but if you throw it at the
classic “Dining Philosopher’s” problem from operating systems,
you’ll find that it works.

import threading

def philosopher(n, left_stick, right_stick):

 while True:

 with acquire(left_stick, right_stick):

 print(“%d eating” % n)

def dining_philosophers():

 sticks = [threading.Lock() for n in range(5)]

 for n in range(5):

 left_stick = sticks[n]

 right_stick = sticks[(n + 1) % 5]

 t = threading.Thread(target=philosopher,

 args=(n, left_stick, right_stick))

 t.daemon = True

 t.start()

if __name__ == ‘__main__’:

 import time

 dining_philosophers()

 time.sleep(10)

If you run the above code, you should see all of the philosophers
running deadlock free for about 10 seconds. After that, the pro-
gram simply terminates.

Making a Temporary Patch to Module
Here’s a context manager that allows you to make a temporary
patch to a variable defined in an already loaded module:

from contextlib import contextmanager

import sys

@contextmanager

def patch(qualname, newvalue):

 parts = qualname.split(‘.’)

 assert len(parts) > 1, “Must use fully qualified name”

 obj = sys.modules[parts[0]]

 for part in parts[1:-1]:

 obj = getattr(obj, part)

 name = parts[-1]

 oldvalue = getattr(obj, name)

 try:

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 63

COLUMNS
Python: With That: Five Easy Context Managers

 setattr(obj, name, newvalue)

 yield newvalue

 finally:

 setattr(obj, name, oldvalue)

Here’s an example of using this manager:

>>> import io

>>> with patch(‘sys.stdout’, io.StringIO()) as out:

... for i in range(10):

... print(i)

...

>>> out.getvalue()

‘0\n1\n2\n3\n4\n5\n6\n7\n8\n9\n’

>>>

In this example, the value of sys.stdout is temporarily replaced
by a StringIO object that allows you to capture output directed
toward standard output. This might be useful in the context
of certain tasks such as tests. In fact, the popular mock tool
(https://pypi.python.org/pypi/mock) has a similar, but much
more powerful variant of this decorator.

More Information
This article is really only scratching the surface of what’s
possible with context managers; however, the key takeaway is
that context managers can be used to address a wide variety of
problems that come up in real-world programming. Not only
that, they are relatively easy to define, so you’re definitely not
limited to using them only with Python’s built-in objects such as
files. For more ideas and inspiration, a good starting point might
be documentation for the contextlib module as well as PEP 343
(http://www.python.org/dev/peps/pep-0343/).

BECOME A USENIX SUPPORTER AND
REACH YOUR TARGET AUDIENCE

The USENIX Association welcomes industrial sponsorship and offers custom packages to
help you promote your organization, programs, and products to our membership and con-
ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted
audience, we offer key outreach for our sponsors. To learn more about becoming a USENIX
Supporter, as well as our multiple conference sponsorship packages, please contact
 sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence
and innovation in neutral forums. Sponsorship of USENIX keeps our conferences affordable
for all and supports scholarships for students, equal representation of women and minorities
in the computing research community, and the development of open source technology.

www.usenix.org/usenix-corporate-supporter-program

