
34    A p r i l 20 14  Vo l . 3 9, N o. 2 	 www.usenix.org

NETWORKINGSDN Is DevOps for Networking
R o b S h e r w o o d

Rob serves as the CTO for
Big Switch Networks, where
he spends his time internally
leading software architecture
and externally evangelizing SDN

to customers and partners. Rob is an active
contributor to open source projects such as
Switch Light and Floodlight as well as the Open
Compute Project. He was the former chair
of the ONF’s Architecture and Framework
Working Group as well as vice-chair of the
ONF’s Testing and Interoperability Working
Group. Rob prototyped the first OpenFlow-
based network hypervisor, the FlowVisor,
allowing production and experimental traffic to
safely co-exist on the same physical network
and is involved in various standards efforts and
partner and customer engagements. Rob holds
a PhD in computer science from the University
of Maryland, College Park.
rob.sherwood@bigswitch.com

Caught in a perfect storm of technology trends—including public and
private cloud, Bring-Your-Own-Device (BYOD), converged storage,
and VoIP—computer network management is reaching unprec-

edented levels of complexity. However, unlike server administrators whose
tools have evolved with the times, network administrators are stuck using
20+-year-old box-by-box management tools. A new technology trend, Soft-
ware-Defined Networking (SDN), promises to simplify network manage-
ment. Although it seems like every vendor has its own definition of SDN, in
this article, I make the claim that SDN is to networking what the DevOps
movement is to server management: a way of making systems management
easier to manage by adding programmable APIs that enable better automa-
tion, centralization, and debugging. In this article, I try to provide back-
ground on SDN, to snapshot its current and highly fluid state, and end with
some predictions for what to expect next.

Networking Needs a “DevOps”
All types of networks, including campus, datacenter, branch office, wide area, and access
networks, are growing at unprecedented speeds. More people with more devices are coming
online and are accessing an increasing plethora of data. Although this is good for society at
large, the reality is that networks themselves are becoming increasingly difficult for “mere
mortals” to manage. In the past, sensitive data would exist on a single, dedicated, physi-
cal server in a fixed location with a clear physical DMZ policy “choke point” as the divide
between the trusted and untrusted parts of the network. Today, sensitive data can be spread
across multiple databases potentially distributed throughout the cloud on virtual machines
that change physical location depending on load; thus, the single policy “choke-point” is a
thing of the past.

While low-level packet forwarding devices have made amazing advances with speeds mov-
ing from 100 Mb/s server ports to 10 Gb/s and beyond, the management tools needed to oper-
ate and debug these devices have stagnated. Indeed, operators of today use the same basic
command-line syntax and tools to configure routers as when I first started administering
networks 20 years ago. The only thing that seems to have changed is that we used to telnet to
these boxes but now we use SSH! Furthermore, network administrators are caught between
a rock and a hard place because the management interfaces for the network devices are typi-
cally closed, vertically integrated systems that resist enhancement or replacement.

Despite going through the same growing pains, server administrators dodged these problems
with a variety of automation and centralization tools that can roughly be grouped under the
term “DevOps.” DevOps infuses traditional server administration with best practices from
software engineering, including abstraction, automation, centralization, release manage-
ment, and testing. The server ecosystem is quite different from networking because it has
many open interfaces: server admins can supplement, enhance, or replace software com-
ponents of their systems, including configuration files, whole applications, device drivers,
libraries, or even the entire operating system if desired. As a result, server administrators

www.usenix.org	   A p r i l 20 14  Vo l . 3 9, N o. 2  35

Networking
SDN Is DevOps for Networking

were able to manage growing server complexity by replacing and
automating critical components of their management stack with
tools such as Puppet [1], Chef [2], and others. In other words,
although server administrators have the same problems in
terms of scale and complexity as network administrators, they
were able to solve their problem with DevOps-style deployments
because the server ecosystem has open and programmable
interfaces.

SDN Promises an Interface to Unlock Networking
Centralization, automation, and better debugging sound like
good goals, but the closed and vertically integrated nature of
most switches and routers makes it unclear how to apply them
to networking. SDN promises to create an application program-
ming interface (API) for networking and thus unlock DevOps’
same desirable properties of automation, centralization, and
testing.

The term SDN was first coined in an MIT Technology Review
article [3] by comparing the shift in networking to the shift in
radio technology with the advance from software defined radios.
However, the term is perhaps misleading because almost all
networking devices contain a mix of hardware and software
components. This ambiguity was leveraged and exacerbated by a
litany of companies trying to re-brand products under the “SDN”
umbrella and effectively join the SDN bandwagon. As a result,
much of the technical merit of SDN has been lost in the noise.

The SDN movement, originating from Stanford University
circa 2007, was first exemplified by the OpenFlow protocol.
OpenFlow is an open protocol and is currently maintained by
the vendor-neutral Open Networking Foundation [4]. Open-
Flow exposes a remote API for managing the low-level packet
forwarding portions of network devices, including switches,
routers, access points, and the like. At a high level, OpenFlow
abstracts packet forwarding devices as a series of “match action”
tables. That is, when a packet arrives at a device, it is processed
through a series of prioritized lookup tables of the form “if the
packet matches MATCH, then apply LIST OF ACTIONS,” where
the list of actions can be anything from “send packet out port X,”
“decrement TTL,” or rewrite one of the packet header fields. By
creating this abstraction layer and interface, network admins
can, in a programmable way, manage the forwarding rules of
their networks in an automated and centralized manner.

Many-Layered APIs of SDN
From the first successes of OpenFlow [5], SDN began to expand
and consider new use cases and deployments. As with any
vibrant software ecosystem, many APIs—both complementary
and competing—have begun to emerge. In addition to APIs like
OpenFlow for managing packet forwarding logic, interfaces for
managing configuration, tunneling, as well as more traditional

APIs for statistics monitoring and debugging are being viewed
as SDN. Most recently, much like with servers, the lowest-level
“bare metal” hardware APIs are being exposed, allowing enter-
prising startup companies and DIY types to write their own
network operating systems from the ground up. In other words,
SDN is bringing the networking ecosystem closer to the server
DevOps ecosystem where an administrator can choose the right
API/tool for the task and automate and centralize common tasks.

As with any complex and rapidly evolving system, tracking all of
the APIs, protocols, ideas, and works-in-progress is impractical,
but here I try to provide a hopefully representative snapshot of
the state of SDN. Figure 1 provides a visible map of some of the
existing layers.

Forwarding Plane APIs
Probably the most important and novel aspect of SDN is the
ability to programmatically manage low-level packet forward-
ing. OpenFlow itself has evolved quite a bit since its debut 1.0
release in 2009. More modern versions of OpenFlow have added
support for richer packet actions (e.g., NAT, tunneling, meter-
ing), more extensible matches, multiple tables, IPv6 support,
and even batched “bundled” commands with the most recent
version: OpenFlow 1.4.0 [6]. In addition to new forwarding
capabilities, the Open Networking Foundation (ONF) is explor-
ing better abstractions for wired forwarding hardware as well
as for optical and wireless technologies. Rather than replacing
traditional routing forwarding decisions, the IETF’s Interface to
the Routing System (I2RS [7]) seeks to provide an API for merg-
ing programmatic packet forwarding with packet forwarding
decisions inferred from traditional routing protocols like BGP,
IS-IS, OSPF, and others. Not to be left out, traditional network-
ing vendors have created their own forwarding APIs, including
Cisco’s onePK and Juniper’s Junos Space.

Configuration and Statistics APIs
Besides low-level packet forwarding, networking devices have
a dizzying array of tunable configuration parameters and
statistics. Many protocols, such as SNMP and Netconf that long
predated OpenFlow exposed APIs (“MIBs” in SNMP, “schemas”

Figure 1: SDN has many layers, from the traditional APIs, to the forward-
ing APIs that were the first target of SDN, to the bare metal APIs.

36    A p r i l 20 14  Vo l . 3 9, N o. 2 	 www.usenix.org

Networking
SDN Is DevOps for Networking

in Netconf), allow network admins to tweak configuration set-
tings and monitor statistics like port counters. Newer APIs, like
ONF’s OpenFlow Config protocol [8] and Open vSwitch’s DB man-
agement API [9], supplement existing APIs by adding support for
managing tunnels and virtual switches (i.e., by adding and remov-
ing virtual ports). Additionally, many of these APIs have support
to enable and configure packet sampling protocols like NetFlow
and sFlow, which are critical for in-depth traffic analysis.

Bare Metal and Open Hardware APIs
Whereas the above APIs build on top of existing vendor soft-
ware, it is increasingly possible to write directly to the low-level
hardware APIs and replace vendor software altogether. By com-
parison, if writing packet forwarding rules is like writing your
own application, then writing to the bare metal hardware is like
writing your own operating system. Although writing the entire
network stack is not for the faint-of-heart, it can be necessary to
overcome limitations of existing vendor stacks or to accomplish
something completely revolutionary. Writing to the bare metal
is made possible by two recent changes in the ecosystem: a stan-
dardized network device boot loader and open ASIC APIs.

The Open Network Install Environment (ONIE [10]) is an
open source boot loader available for an increasing number of
networking devices, particularly datacenter switches. In server
terms, ONIE provides functionality that is one part PC BIOS and
one part grub/lilo/sysimage. A network admin can use ONIE to
add/remove/reset the switch operating system over the network.
In other words, using ONIE, it is possible to network boot (or
even dual boot!) an arbitrary network operating system on to an
ONIE-enabled network device. Think of it as PXE for switches
and routers. ONIE is hosted and sponsored by the Open Compute
Project (OCP [11]), which, among other aspects, includes open
hardware designs and specifications for networking devices.

To achieve high speeds, modern networking typically requires
special purpose hardware, such as an Application-Specific Inte-
grated Circuit (ASIC). Historically, the APIs to program these
ASICs have been closed and access to them tightly controlled via
strict non-disclosure agreements. However, more recently, ASIC
manufacturers are moving to the “bare metal” bandwagon and
have started to make the APIs public. For example, ASIC manu-
facturers Centec and Mellanox have begun to publish their APIs
in their Lantern [12] and Open Ethernet [13] projects, respec-
tively. Other ASIC manufacturers seem likely to follow suit, so
this trend seems likely to increase over time.

Impact from Market Forces
Although SDN is primarily a technology movement, it would be
an error to assume that its traction is purely a result of a superior
architecture. As technologists, we like to ignore the economics,
but history is filled with technologies that didn’t succeed despite

superior design. In particular, technologies similar to SDN have
come and gone in the past without comparable traction, includ-
ing IETF’s ForCES [14] and the field of active networking. So
a critical question is, why is SDN achieving industry traction
where similar technologies have not?

The answer is that the underlying market forces of networking
have significantly changed. Large datacenters mean that more
money is being spent on networking than ever before, which
encourages both more competition as well as bigger gains from
commodities of scale. Historically, packet forwarding ASICs
were only created by pure networking vendors for inclusion into
their own vertically integrated products. As a result, the market
rewarded vertically integrated closed systems because that best
protected the companies’ ASIC investments. But, with the rise of
large datacenters, sufficient ASICs were being sold that highly
specialized “ASIC only” companies became commercially viable.
Soon, companies like Broadcom, Marvell, Fulcrum, and others
began to create switching ASICs and sell them to others without
owning the full solution. Competition for this new commodity
“merchant” silicon space increased, and now we are beginning to
see strong market forces come into play in terms of lower costs
and additional features. This is all because merchant silicon
companies have the incentive to sell more and better ASICs—not
more and better boxes. It is a result of this competition that these
same companies are breaking industry norms and publishing
their APIs—and thus enabling SDN.

Another effect of large datacenters is the convergence of com-
pute, storage, and networking. Administrators are increasingly
buying these resources as integrated solutions, and vendors
are reacting in turn. The result is that traditional networking
companies are starting to sell products that integrate compute
and storage (e.g., Cisco’s UCS product), and traditional com-
puter companies are starting to acquire networking companies
(e.g., HP bought 3Com, Dell bought Force10, IBM bought Blade
Networks). The once very stable networking market is full of
new and significant competition, with each company looking
for ways to differentiate itself from the rest—including open-
ing up networking devices by implementing SDN protocols like
OpenFlow.

Conclusions and Predictions
Networking administrators are adopting SDN for many of the
same reasons that server administrators adopted DevOps:
automation, centralization, and ease of debugging. Historically,
network devices have been vertically integrated closed software
stacks with few mechanisms to replace or extend their function-
ality. However, recent changes in the market are causing vendors
to shift their business models and open up their devices to pro-
grammable access through a suite of APIs. The result appears
to be a trend towards a more extensible and vibrant third-party
software-driven networking ecosystem.

www.usenix.org	   A p r i l 20 14  Vo l . 3 9, N o. 2  37

Networking
SDN Is DevOps for Networking

Perhaps more interesting than any one specific API are the
applications that are enabled by using combinations of APIs.
For example, imagine an application that makes API calls to all of
the devices in the network to set up sFlow sessions, monitor the
dynamically changing traffic, and then make further API calls to
readjust traffic engineering policies via OpenFlow. Such combina-
tions will allow networks to be more easily managed and scale up
to the demands from BYOD, VoIP, and future technology trends.

In terms of predictions, my big claim is this: after 20+ years of
closed software stacks in networking devices, the genie is out of
the bottle. I believe that as in the transition from the IBM main-
frame to the PC or from closed cell phones to modern, open API
smartphones, we will see networking go through a renaissance.
We will see switch operating systems and applications that are
entirely open source, and applications that do more niche and
specialized tasks. We will see the cost of hardware drop signifi-
cantly: just to put a number to it, I believe we will see the cost
of 10G Ethernet switches drop below $75 per port before 2015.
This explosion of new ideas, lower cost hardware, and innova-
tive networking features will change how networking consum-
ers view their networks. In other words, I believe that with an
open network, operators will be empowered to create and deploy
innovative new features that will change networking from a cost
center into a new source of revenue in terms of novel products for
their customers. The really fun question becomes, what will be
the killer app that no one thought of until everyone needed it?

References
[1] Puppet: http://www.puppetlabs.com.

[2] Chef: http://www.getchef.com.

[3] Kate Greene, “10 Breakthrough Technologies: TR10—
Software-Defined Networking,” MIT Technology Review,
March/April 2009: http://www2.technologyreview.com
/article/412194/tr10-software-defined-networking/.

[4] Open Networking Foundation: https://www
.opennetworking.org.

[5] Open Networking Foundation, Solution Briefs: https://
www.opennetworking.org/sdn-resources/sdn-library
/solution-briefs.

[6] Open Networking Foundation, OpenFlow 1.4.0 Wire
Protocol Specification: https://www.opennetworking.org
/images/stories/downloads/sdn-resources/onf-specifications
/openflow/openflow-spec-v1.4.0.pdf.

[7] I2RS: https://datatracker.ietf.org/wg/i2rs/charter/.

[8] OpenFlow Config Protocol: https://www.opennetworking
.org/sdn-resources/onf-specifications/openflow-config.

[9] Open vSwitch’s DB management API: http://www
.openvswitch.org.

[10] Open Network Install Environment (ONIE): http://
onie.github.io/onie/docs/overview/index.html.

[11] Open Compute Project: Networking: http://www
.opencompute.org/projects/networking/.

[12] Centec Lantern ASIC APIs: http://www.centecnetworks
.com/en/OpenSourceList.asp?ID=260.

[13] Mellanox Open Ethernet Project: http://www.mellanox
.com/openethernet/.

[14] IETF’s ForCES: http://datatracker.ietf.org/wg/forces
/charter/.

http://www.puppetlabs.com/
http://www.getchef.com/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.opennetworking.org/
http://www.opennetworking.org/
https://www.opennetworking.org/sdn-resources/sdn-library/solution-briefs
https://www.opennetworking.org/sdn-resources/sdn-library/solution-briefs
https://www.opennetworking.org/sdn-resources/sdn-library/solution-briefs
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://datatracker.ietf.org/wg/i2rs/charter/
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow-config
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow-config
http://www.openvswitch.org/
http://www.openvswitch.org/
http://onie.github.io/onie/docs/overview/index.html
http://onie.github.io/onie/docs/overview/index.html
http://www.opencompute.org/projects/networking/
http://www.opencompute.org/projects/networking/
http://www.centecnetworks.com/en/OpenSourceList.asp?ID=260
http://www.centecnetworks.com/en/OpenSourceList.asp?ID=260
http://www.mellanox.com/openethernet/
http://www.mellanox.com/openethernet/
http://datatracker.ietf.org/wg/forces/charter/
http://datatracker.ietf.org/wg/forces/charter/

