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Storage systems have grown to the point where failures are inevitable, 
and those who design systems must plan ahead so that precious data 
is not lost when failures occur. The core technology for protecting data 

from failures is erasure coding, which has a rich 50+ year history stemming 
communication systems, and as such, can be confusing to the storage systems 
community. In this article, I present a primer on erasure coding as it applies to 
storage systems, and I summarize some recent research on erasure coding.

Storage systems come in all shapes and sizes, but one thing that they all have in common is 
that components fail, and when a component fails, the storage system is doing the one thing 
it is not supposed to do: losing data. Failures are varied, from disk sectors becoming silently 
corrupted, to entire disks or storage sites becoming unusable. The storage components them-
selves are protected from certain types of failures. For example, disk sectors are embedded 
with extra-correcting information so that a few flipped bits may be tolerated; however, when 
too many bits are flipped, or when physical components fail, the storage system sees this as 
an erasure: the storage is gone!

To deal with these failures, storage systems rely on erasure codes. An erasure code adds 
redundancy to the system to tolerate failures. The simplest of these is replication, such as 
RAID-1, where each byte of data is stored on two disks. In that way any failure scenario may 
be tolerated, so long as every piece of data has one surviving copy. Replication is conceptu-
ally simple; however, it consumes quite a lot of resources. In particular, the storage costs are 
doubled, and there are scenarios in which two failed storage components (those holding both 
copies of a piece of data) lead to data loss.

More complex erasure codes, such as the well-known Reed-Solomon codes, tolerate broader 
classes of failure scenarios with less extra storage. As such, they are applicable to today’s 
storage systems, providing higher levels of fault-tolerance with less cost. Unfortunately, 
the field of erasure coding traces its lineage to error correcting codes (ECC) in communica-
tion systems, where they are used to solve a similar-sounding but in reality quite different 
problem. In communications, errors arise when bits are corrupted silently in a message. This 
differs from an erasure, because the location of the corruption is unknown. The fact that 
erasures expose the location of the failure allows for erasure codes to be more powerful than 
ECCs; however, classic treatments of erasure codes present them as special cases of ECCs, 
and their application to storage systems is hard to glean.

In this article, I explain erasure codes in general as they apply to storage systems. I will first 
present nomenclature and general erasure coding mechanics, and then outline some com-
mon erasure codes. I then detail some of the more recent research results concerning erasure 
codes and storage systems. I provide an annotated bibliography at the end of this article so 
that the interested reader may explore further.

The Mechanics of Simple Codes
Let’s assume that our storage system is composed of n disks. We partition them into k disks 
that hold user data so that m=n−k disks hold coding information. I refer to them as data and 
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coding disks, respectively. The acts of encoding and decoding are 
pictured in Figure 1.

With encoding, the contents of the k data disks are used to calcu-
late the contents of the m coding disks. When up to m disks fail, 
their contents are decoded from the surviving disks. Repeating 
from above, when a disk fails, the failure mode is an erasure, 
where its contents are considered to be unreadable.

The simplest erasure codes assume that each disk holds one 
w-bit word. I label these words d0, …, dk−1, which are the data 
words stored on the data disks, and c0, …, cm−1, which are the 
coding words stored on the coding disks. The coding words are 
defined as linear combinations of the data words: 

c0 = a(0,0)d0 + …+ a(0,k−1)dk−1
c1 = a(1,0)d0 + …+ a(1,k−1)dk−1
…

…

cm−1 = a(m−1,0)d0 + …+ a(m−1,k−1)dk−1

The coefficients a are also w-bit words. Encoding, therefore, 
simply requires multiplying and adding words, and decoding 
involves solving a set of linear equations with Gaussian elimina-
tion or matrix inversion.

The arithmetic of erasure coding is special. When w=1, all of the 
d, c and a variables are single bits, and the arithmetic is standard 

arithmetic modulo 2: addition is binary XOR (⊕) and multiplica-
tion is binary AND. When w is larger, the arithmetic is called 
Galois Field arithmetic, denoted GF(2w). This arithmetic oper-
ates on a closed set of numbers from 0 to 2w−1 in such a way that 
addition, multiplication, and division all have the properties that 
we expect. Conveniently, addition in a Galois Field is equal to 
bitwise XOR. Multiplication is more complicated, and beyond the 
scope of this article; however, there is a great deal of reference 
material on Galois Field arithmetic plus a variety of open source 
implementations (please see the annotated bibliography).

A disk, of course, holds more than a single w-bit word; how-
ever, with these simple codes, I partition each disk into w-bit 
words, and the i-th words on each disk are encoded and decoded 
together, independently of the other words. So that disks may be 
partitioned evenly into w-bit words, w is typically selected to be 
a power of two. Popular values are w=1 for its simplicity, because 
the arithmetic is composed of XORs and ANDs, and w=8, 
because each word is a single byte. In general, larger values of w 
allow for richer erasure codes, but the Galois Field arithmetic is 
more complex computationally.

An erasure code is therefore defined by w and the coefficients 
a( i,j ). If the code successfully tolerates the failures of any m 
of the n disks, then the code is optimal with respect to fault-
tolerance for the amount of extra space dedicated to coding. 
This makes sense, because one wouldn’t expect to add m disks 
of redundancy and be able to tolerate more than m disk failures. 
If a code achieves this property, it is called maximum distance 
separable (MDS), a moniker that conveys zero intuition in a stor-
age system. Regardless, MDS codes are desirable, because they 
deliver optimal fault tolerance for the space dedicated to coding.

In real storage settings, disks are partitioned into larger units 
called strips, and the set of corresponding strips from each of the 
n disks that encode and decode together is called a stripe. Each 
stripe is an independent entity for erasure coding, which allows 
the storage system designer to be flexible for a variety of reasons. 
For example, one may wish to rotate the identities of the n disks 
on a stripe-by-stripe basis, as in the left side of Figure 2. This is 

Figure 1: An erasure-coded storage system encodes k data disks onto m 
coding disks. When up to m disks fail, their contents are decoded by the 
erasure code.

Figure 2: Two examples of laying out stripes on a collection of disks. On the left, there are n=4 disks, and each stripe contains k=3 strips of data and m=1 
of coding. So that load is balanced, each stripe rotates the identities of the disks. On the right, there are now eight disks; however stripes still contain n=4 
strips, three of which are data and one of which is coding.
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a balanced approach, where each of the n=4 disks contains the 
same ratio of data and coding strips.

On the right side, a more ad hoc approach to laying out stripes 
is displayed. There are eight disks in this system; however, each 
stripe is composed of three data strips and one coding strip. 
Thus, the erasure code may be the same as in the left side of the 
figure; the allocation of strips to stripes is the only difference. 
This approach was used by Panasas to allow for flexible block 
allocation, and to allow additional disks to be added seamlessly 
to the storage system.

RAID-4 and RAID-5
Within this framework, I can define RAID-4 and RAID-5 as 
using the same simple erasure code, but having different stripe 
layouts. The code is an MDS code where m=1, w=1, and all of the a 
coefficients are also one. The sole coding bit is labeled p, and it is 
the XOR of all of the data bits: 

p = d0 ⊕d1 ⊕…⊕dk−1.

When any bit is erased, it may be decoded as the XOR of the 
surviving bits.

Although this equation operates on single bits, its implementa-
tion in a real system is extremely efficient, because whole strips 
may be XOR’d together in units of 128 or 256 bits using vector 
instructions such as Intel SSE2 (128 bits) or AVX (256 bits).

RAID-4 and RAID-5 both use the same erasure code; however, 
with RAID-4, the identity of each disk is fixed, and there is one 
disk, P, dedicated solely to coding. With RAID-5, the identities 
are rotated on a stripe-by-stripe basis as in the left side of Figure 
2. Therefore, the system is more balanced, with each disk equally 
holding data and coding.

Linux RAID-6
RAID-6 systems add a second disk (called Q) to a RAID-4/5 
system and tolerate the failure of any two disks. This requires 
an MDS erasure code where m=2, which is impossible to achieve 
with a simple XOR code. The solution implemented by the Red 
Hat Linux kernel employs the following simple code for w=8: 

p = d0 ⊕d1 ⊕…⊕dk−1
q = d0 ⊕2(d1) ⊕…⊕2k−1(dk−1)

This code has some interesting properties. First, because addi-
tion in a Galois Field is equivalent to XOR, the P disk’s erasure 
coding is equivalent to RAID-4/5. Second, the Q disk may be cal-
culated using only addition and multiplication by two, because: 

q = 2 ( 2 ( …2 (2dk−1 ⊕dk−2) …) ⊕d1 ) ⊕d0.

This is important because there are techniques to multiply 
128- and 256-bit vectors of bytes by two in GF(28) with a small 
number of SSE/AVX instructions.

Reed-Solomon Codes
Reed-Solomon codes are MDS codes that exist whenever n ≤ 2w. 
For example, so long as a storage system contains 256 disks or 
less, there is a Reed-Solomon defined for it that uses arithmetic 
in GF(28). There are multiple ways to define the a(i,j) coef-
ficients. The simplest to explain is the “Cauchy” construction: 
Choose n distinct numbers in GF(2w) and partition them into 
two sets X and Y such that X has m elements and Y has k. Then: 

a( ij) =        1       ,
 xi  ⊕yj

where arithmetic is over GF(2w).

Reed-Solomon codes are important because of their generality: 
they exist and are easy to define for any value of k and m. They 
have been viewed historically as expensive, because the CPU 
complexity of multiplication in a Galois Field is more expensive 
than XOR; however, vector instruction sets such as Intel SSE3 
include operations that enable one to multiply 128-bit vectors 
of bytes by constants in a Galois Field with a small number of 
instructions. Although not as fast as multiplying by two as they 
do for a RAID-6 Q disk, it is fast enough that in most Reed-
Solomon coding installations, disk I/O and even cache speeds 
are larger bottlenecks than the CPU. There are multiple open 
source libraries that implement Reed-Solomon coding for stor-
age installations.

Array Codes
Array codes for storage systems arose in the 1990s. They were 
motivated by the desire to avoid Galois Field arithmetic and 
implement codes solely with the XOR operation. In the simple 
codes above, each disk logically holds one w-bit word, and thus 
there are m coding words, each of which is a different linear 
combination of the k data words. In an array code, each disk 
holds r w-bit words. Thus, there are mr coding words, each of 
which is a different linear combination of the kr data words.

They are called “array codes” because the coding system may 
be viewed as an r × n array of words, where the columns of the 
array are words that are co-located on the same disk. I depict 
an example in Figure 3. This is the RDP erasure code for k=4 
and m=2. As such, it is a RAID-6 code. Each disk holds four bits, 
which means that r=4 and w=1. In the picture, I draw the array 
with the Q words on the left, the P words on the right, and the 
data words in the middle. The horizontal gray bars indicate XOR 
equations for the P disk’s bits, and the other lines indicate how 
the Q disk’s bits are encoded.

The allure of array codes for w=1 is that encoding and decoding 
require only XOR operations, yet the codes may be defined so 
that they are MDS. Examples are RDP, EVENODD, Blaum-Roth 
and Liberation codes for RAID-6, the STAR code for m=3, and 
Cauchy Reed-Solomon, Generalized EVENODD and General-
ized RDP, which are defined for all values of k and m.
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As mentioned in the section on mechanics, above, the advent of 
vector instructions has lowered the CPU burden of Galois Field 
arithmetic, and thus the allure of array codes has diminished 
in recent years; however, they have interesting properties with 
respect to recovery that make them viable alternatives to the 
simple codes. I explain this in the next section.

Recent Work #1: Reduced Disk I/O For Recovery
When one is using a simple erasure code and a single disk fails, 
the only way to recover its contents is to pick one of the m cod-
ing equations and use it to decode. This requires one to read k−1 
strips from the surviving disks to calculate each strip on the 
failed disk. With an array code, one may significantly reduce the 
amount of data that is read from the surviving disks. I present an 
example in Figure 4, using the RDP code from Figure 3. In this 
example, the disk D0 has failed and needs to be decoded. Were a 
simple erasure code employed, recovery would be equivalent to 
decoding solely from the P drive, where 16 bits must be read from 
the surviving disks; however, because of the structure of RDP, 
a judicious choice of decoding equations from both the P and Q 
drive allows one to decode D0 by reading only 12 bits from the 
surviving disks.

As described in the section on mechanics, each bit in the descrip-
tion of the code corresponds to a larger block of storage on disk, 
which means that this example reduces the I/O costs of recovery 
by 25 percent. This observation was first made by Xiang in 2010, 
and further research has applied it to other array codes.

Recent Work #2: Regenerating Codes
Regenerating codes focus on reducing network I/O for recovery 
in distributed, erasure-coded storage systems. When one or 
more storage nodes fail, the system replaces them, either with 
nodes that hold their previous contents, or with nodes that hold 
equivalent contents from an erasure-coding perspective. In 

other words, the new collection of n nodes may hold different 
contents than the old collection; however, it maintains the prop-
erty that the data may be calculated from any k of the nodes.

The calculation of these new nodes is performed so that net-
work I/O is minimized. For example, suppose one storage node 
has failed and must be replaced. A simple erasure code requires 
k−1 of the other nodes to read their contents and send them for 
reconstruction. The schemes from Xiang (previous section) 
may leverage array codes so that more than k−1 nodes read and 
transmit data, but the total amount of data read and transmitted 
is reduced from the simple case. A properly defined regenerating 
code has the surviving nodes read even more data from disk, but 
then they massage it computationally so that they transmit even 
less data to perform regeneration.

Research on regenerating codes is both active and prolific. 
Please see the bibliography for summaries and examples.

Recent Work #3: Non-MDS Codes
A non-MDS code does not tolerate all combinations of m failures, 
and therefore the fault-tolerance is not optimal for the amount of 
extra storage committed to erasure coding; however, relaxation 
of the MDS property is typically accompanied by performance 
improvements that are impossible to achieve with MDS codes. I 
give a few examples here.

Flat XOR codes are simple codes where w=1. When m > 1, they 
are non-MDS; however, they have attractive features in com-
parison to their MDS counterparts. First, since w=1, they are 
based solely on the XOR operation—no Galois Field arithmetic is 
required. Second, they reduce both the I/O and the CPU com-
plexity of encoding and decoding. When k and m grow to be very 
large (in the hundreds or thousands), flat XOR codes like Tor-
nado and Raptor codes provide good degrees of fault-tolerance, 
while only requiring small, constant numbers of I/Os and XORs 

Figure 3: The RDP array code with the following parameters: k=4, m=2 
(RAID-6), n = k+m = 6, r=4, w=1. The gray lines depict the coding 
 equations for the P disk. The other lines depict the coding equations for 
the Q disk.

Figure 4: Recovering from a single failure in RDP. Only 12 bits are required, 
as opposed to 16 bits when one recovers solely from the P disk.
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for encoding and decoding. This is as opposed to an MDS code, 
which necessarily requires O(k) I/Os and arithmetic operations. 
Other non-MDS codes that reduce complexity and rely solely on 
XOR are HoVeR, WEAVER, and GRID.

A second important class of non-MDS codes partitions the data 
words into groups, and divides the coding words into “local 
parities” and “global parities.” Each local parity word protects 
a single group of data words, whereas each global parity word 
protects all of the words. The system is then fault-tolerant to 
a certain number of failures per data group, plus an additional 
number of failures for the entire system. The computational and 
I/O costs are smaller than an MDS system, yet the failure cover-
age is provably optimal for this coding paradigm. Examples of 
these codes are LRC codes that are implemented in Microsoft’s 
Azure storage system, an identically named but different LRC 
code that has an open-source implementation in Hadoop, and 
Partial-MDS codes from IBM.

Finally, Sector-Disk (SD) codes are a class of non-MDS codes 
where m disks and s sectors per stripe are dedicated to fault-tol-
erance. An example is drawn in Figure 5, where a 6-disk system 
requires each disk to hold four words in its stripe. Two disks 
are devoted to fault-tolerance, and two additional words in the 
stripe are also devoted to fault-tolerance. The codes are designed 
so that they tolerate the failure of any two disks and any two 
additional words in the stripe. Thus, their storage overhead and 
fault-tolerance match the mixed failure modes of today’s disks, 
where sector failures accumulate over time, unnoticed until a 
disk failure requires that they be read for recovery.

Conclusion
In this article, I have presented how erasure codes are leveraged 
by storage systems to tolerate the failure of disks, and in some 
cases, parts of disks. There are simple erasure codes, such as 
RAID-4/5 and Reed-Solomon codes, that view each disk as hold-
ing a single w-bit word, and define the coding words as linear 

combinations of the data words, using either XOR or Galois Field 
arithmetic. Array codes view each disk as holding multiple w-bit 
words, and achieve richer fault-tolerance, especially for codes 
based solely on the XOR operation. More recent work has focused 
on reducing the disk and network I/O requirements of the era-
sure codes, and on loosening the fault-tolerance requirements of 
the codes to improve performance.
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