
44  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

Erasure Codes for Storage Systems
A Brief Primer

J a M E s s . p l a n k

James S. Plank received
his BS from Yale University
in 1988 and his PhD from
Princeton University in 1993.
He is a professor in the

Electrical Engineering and Computer Science
Department at the University of Tennessee,
where he has been since 1993. His research
interests are in fault-tolerance, erasure
coding, storage systems, and distributed
computing. He is a past Associate Editor of
IEEE Transactions on Parallel and Distributed
Computing, and a member of the IEEE
Computer Society. plank@cs.utk.edu

Storage systems have grown to the point where failures are inevitable,
and those who design systems must plan ahead so that precious data
is not lost when failures occur. The core technology for protecting data

from failures is erasure coding, which has a rich 50+ year history stemming
communication systems, and as such, can be confusing to the storage systems
community. In this article, I present a primer on erasure coding as it applies to
storage systems, and I summarize some recent research on erasure coding.

Storage systems come in all shapes and sizes, but one thing that they all have in common is
that components fail, and when a component fails, the storage system is doing the one thing
it is not supposed to do: losing data. Failures are varied, from disk sectors becoming silently
corrupted, to entire disks or storage sites becoming unusable. The storage components them-
selves are protected from certain types of failures. For example, disk sectors are embedded
with extra-correcting information so that a few flipped bits may be tolerated; however, when
too many bits are flipped, or when physical components fail, the storage system sees this as
an erasure: the storage is gone!

To deal with these failures, storage systems rely on erasure codes. An erasure code adds
redundancy to the system to tolerate failures. The simplest of these is replication, such as
RAID-1, where each byte of data is stored on two disks. In that way any failure scenario may
be tolerated, so long as every piece of data has one surviving copy. Replication is conceptu-
ally simple; however, it consumes quite a lot of resources. In particular, the storage costs are
doubled, and there are scenarios in which two failed storage components (those holding both
copies of a piece of data) lead to data loss.

More complex erasure codes, such as the well-known Reed-Solomon codes, tolerate broader
classes of failure scenarios with less extra storage. As such, they are applicable to today’s
storage systems, providing higher levels of fault-tolerance with less cost. Unfortunately,
the field of erasure coding traces its lineage to error correcting codes (ECC) in communica-
tion systems, where they are used to solve a similar-sounding but in reality quite different
problem. In communications, errors arise when bits are corrupted silently in a message. This
differs from an erasure, because the location of the corruption is unknown. The fact that
erasures expose the location of the failure allows for erasure codes to be more powerful than
ECCs; however, classic treatments of erasure codes present them as special cases of ECCs,
and their application to storage systems is hard to glean.

In this article, I explain erasure codes in general as they apply to storage systems. I will first
present nomenclature and general erasure coding mechanics, and then outline some com-
mon erasure codes. I then detail some of the more recent research results concerning erasure
codes and storage systems. I provide an annotated bibliography at the end of this article so
that the interested reader may explore further.

The Mechanics of Simple Codes
Let’s assume that our storage system is composed of n disks. We partition them into k disks
that hold user data so that m=n−k disks hold coding information. I refer to them as data and

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 45

SYSADMIN
Erasure Codes for Storage Systems

coding disks, respectively. The acts of encoding and decoding are
pictured in Figure 1.

With encoding, the contents of the k data disks are used to calcu-
late the contents of the m coding disks. When up to m disks fail,
their contents are decoded from the surviving disks. Repeating
from above, when a disk fails, the failure mode is an erasure,
where its contents are considered to be unreadable.

The simplest erasure codes assume that each disk holds one
w-bit word. I label these words d0, …, dk−1, which are the data
words stored on the data disks, and c0, …, cm−1, which are the
coding words stored on the coding disks. The coding words are
defined as linear combinations of the data words:

c0 = a(0,0)d0 + …+ a(0,k−1)dk−1
c1 = a(1,0)d0 + …+ a(1,k−1)dk−1
…

…

cm−1 = a(m−1,0)d0 + …+ a(m−1,k−1)dk−1

The coefficients a are also w-bit words. Encoding, therefore,
simply requires multiplying and adding words, and decoding
involves solving a set of linear equations with Gaussian elimina-
tion or matrix inversion.

The arithmetic of erasure coding is special. When w=1, all of the
d, c and a variables are single bits, and the arithmetic is standard

arithmetic modulo 2: addition is binary XOR (⊕) and multiplica-
tion is binary AND. When w is larger, the arithmetic is called
Galois Field arithmetic, denoted GF(2w). This arithmetic oper-
ates on a closed set of numbers from 0 to 2w−1 in such a way that
addition, multiplication, and division all have the properties that
we expect. Conveniently, addition in a Galois Field is equal to
bitwise XOR. Multiplication is more complicated, and beyond the
scope of this article; however, there is a great deal of reference
material on Galois Field arithmetic plus a variety of open source
implementations (please see the annotated bibliography).

A disk, of course, holds more than a single w-bit word; how-
ever, with these simple codes, I partition each disk into w-bit
words, and the i-th words on each disk are encoded and decoded
together, independently of the other words. So that disks may be
partitioned evenly into w-bit words, w is typically selected to be
a power of two. Popular values are w=1 for its simplicity, because
the arithmetic is composed of XORs and ANDs, and w=8,
because each word is a single byte. In general, larger values of w
allow for richer erasure codes, but the Galois Field arithmetic is
more complex computationally.

An erasure code is therefore defined by w and the coefficients
a(i,j). If the code successfully tolerates the failures of any m
of the n disks, then the code is optimal with respect to fault-
tolerance for the amount of extra space dedicated to coding.
This makes sense, because one wouldn’t expect to add m disks
of redundancy and be able to tolerate more than m disk failures.
If a code achieves this property, it is called maximum distance
separable (MDS), a moniker that conveys zero intuition in a stor-
age system. Regardless, MDS codes are desirable, because they
deliver optimal fault tolerance for the space dedicated to coding.

In real storage settings, disks are partitioned into larger units
called strips, and the set of corresponding strips from each of the
n disks that encode and decode together is called a stripe. Each
stripe is an independent entity for erasure coding, which allows
the storage system designer to be flexible for a variety of reasons.
For example, one may wish to rotate the identities of the n disks
on a stripe-by-stripe basis, as in the left side of Figure 2. This is

Figure 1: An erasure-coded storage system encodes k data disks onto m
coding disks. When up to m disks fail, their contents are decoded by the
erasure code.

Figure 2: Two examples of laying out stripes on a collection of disks. On the left, there are n=4 disks, and each stripe contains k=3 strips of data and m=1
of coding. So that load is balanced, each stripe rotates the identities of the disks. On the right, there are now eight disks; however stripes still contain n=4
strips, three of which are data and one of which is coding.

46  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Erasure Codes for Storage Systems

a balanced approach, where each of the n=4 disks contains the
same ratio of data and coding strips.

On the right side, a more ad hoc approach to laying out stripes
is displayed. There are eight disks in this system; however, each
stripe is composed of three data strips and one coding strip.
Thus, the erasure code may be the same as in the left side of the
figure; the allocation of strips to stripes is the only difference.
This approach was used by Panasas to allow for flexible block
allocation, and to allow additional disks to be added seamlessly
to the storage system.

RAID-4 and RAID-5
Within this framework, I can define RAID-4 and RAID-5 as
using the same simple erasure code, but having different stripe
layouts. The code is an MDS code where m=1, w=1, and all of the a
coefficients are also one. The sole coding bit is labeled p, and it is
the XOR of all of the data bits:

p = d0 ⊕d1 ⊕…⊕dk−1.

When any bit is erased, it may be decoded as the XOR of the
surviving bits.

Although this equation operates on single bits, its implementa-
tion in a real system is extremely efficient, because whole strips
may be XOR’d together in units of 128 or 256 bits using vector
instructions such as Intel SSE2 (128 bits) or AVX (256 bits).

RAID-4 and RAID-5 both use the same erasure code; however,
with RAID-4, the identity of each disk is fixed, and there is one
disk, P, dedicated solely to coding. With RAID-5, the identities
are rotated on a stripe-by-stripe basis as in the left side of Figure
2. Therefore, the system is more balanced, with each disk equally
holding data and coding.

Linux RAID-6
RAID-6 systems add a second disk (called Q) to a RAID-4/5
system and tolerate the failure of any two disks. This requires
an MDS erasure code where m=2, which is impossible to achieve
with a simple XOR code. The solution implemented by the Red
Hat Linux kernel employs the following simple code for w=8:

p = d0 ⊕d1 ⊕…⊕dk−1
q = d0 ⊕2(d1) ⊕…⊕2k−1(dk−1)

This code has some interesting properties. First, because addi-
tion in a Galois Field is equivalent to XOR, the P disk’s erasure
coding is equivalent to RAID-4/5. Second, the Q disk may be cal-
culated using only addition and multiplication by two, because:

q = 2 (2 (…2 (2dk−1 ⊕dk−2) …) ⊕d1) ⊕d0.

This is important because there are techniques to multiply
128- and 256-bit vectors of bytes by two in GF(28) with a small
number of SSE/AVX instructions.

Reed-Solomon Codes
Reed-Solomon codes are MDS codes that exist whenever n ≤ 2w.
For example, so long as a storage system contains 256 disks or
less, there is a Reed-Solomon defined for it that uses arithmetic
in GF(28). There are multiple ways to define the a(i,j) coef-
ficients. The simplest to explain is the “Cauchy” construction:
Choose n distinct numbers in GF(2w) and partition them into
two sets X and Y such that X has m elements and Y has k. Then:

a(ij) = 1 ,
 xi ⊕yj

where arithmetic is over GF(2w).

Reed-Solomon codes are important because of their generality:
they exist and are easy to define for any value of k and m. They
have been viewed historically as expensive, because the CPU
complexity of multiplication in a Galois Field is more expensive
than XOR; however, vector instruction sets such as Intel SSE3
include operations that enable one to multiply 128-bit vectors
of bytes by constants in a Galois Field with a small number of
instructions. Although not as fast as multiplying by two as they
do for a RAID-6 Q disk, it is fast enough that in most Reed-
Solomon coding installations, disk I/O and even cache speeds
are larger bottlenecks than the CPU. There are multiple open
source libraries that implement Reed-Solomon coding for stor-
age installations.

Array Codes
Array codes for storage systems arose in the 1990s. They were
motivated by the desire to avoid Galois Field arithmetic and
implement codes solely with the XOR operation. In the simple
codes above, each disk logically holds one w-bit word, and thus
there are m coding words, each of which is a different linear
combination of the k data words. In an array code, each disk
holds r w-bit words. Thus, there are mr coding words, each of
which is a different linear combination of the kr data words.

They are called “array codes” because the coding system may
be viewed as an r × n array of words, where the columns of the
array are words that are co-located on the same disk. I depict
an example in Figure 3. This is the RDP erasure code for k=4
and m=2. As such, it is a RAID-6 code. Each disk holds four bits,
which means that r=4 and w=1. In the picture, I draw the array
with the Q words on the left, the P words on the right, and the
data words in the middle. The horizontal gray bars indicate XOR
equations for the P disk’s bits, and the other lines indicate how
the Q disk’s bits are encoded.

The allure of array codes for w=1 is that encoding and decoding
require only XOR operations, yet the codes may be defined so
that they are MDS. Examples are RDP, EVENODD, Blaum-Roth
and Liberation codes for RAID-6, the STAR code for m=3, and
Cauchy Reed-Solomon, Generalized EVENODD and General-
ized RDP, which are defined for all values of k and m.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 47

SYSADMIN
Erasure Codes for Storage Systems

As mentioned in the section on mechanics, above, the advent of
vector instructions has lowered the CPU burden of Galois Field
arithmetic, and thus the allure of array codes has diminished
in recent years; however, they have interesting properties with
respect to recovery that make them viable alternatives to the
simple codes. I explain this in the next section.

Recent Work #1: Reduced Disk I/O For Recovery
When one is using a simple erasure code and a single disk fails,
the only way to recover its contents is to pick one of the m cod-
ing equations and use it to decode. This requires one to read k−1
strips from the surviving disks to calculate each strip on the
failed disk. With an array code, one may significantly reduce the
amount of data that is read from the surviving disks. I present an
example in Figure 4, using the RDP code from Figure 3. In this
example, the disk D0 has failed and needs to be decoded. Were a
simple erasure code employed, recovery would be equivalent to
decoding solely from the P drive, where 16 bits must be read from
the surviving disks; however, because of the structure of RDP,
a judicious choice of decoding equations from both the P and Q
drive allows one to decode D0 by reading only 12 bits from the
surviving disks.

As described in the section on mechanics, each bit in the descrip-
tion of the code corresponds to a larger block of storage on disk,
which means that this example reduces the I/O costs of recovery
by 25 percent. This observation was first made by Xiang in 2010,
and further research has applied it to other array codes.

Recent Work #2: Regenerating Codes
Regenerating codes focus on reducing network I/O for recovery
in distributed, erasure-coded storage systems. When one or
more storage nodes fail, the system replaces them, either with
nodes that hold their previous contents, or with nodes that hold
equivalent contents from an erasure-coding perspective. In

other words, the new collection of n nodes may hold different
contents than the old collection; however, it maintains the prop-
erty that the data may be calculated from any k of the nodes.

The calculation of these new nodes is performed so that net-
work I/O is minimized. For example, suppose one storage node
has failed and must be replaced. A simple erasure code requires
k−1 of the other nodes to read their contents and send them for
reconstruction. The schemes from Xiang (previous section)
may leverage array codes so that more than k−1 nodes read and
transmit data, but the total amount of data read and transmitted
is reduced from the simple case. A properly defined regenerating
code has the surviving nodes read even more data from disk, but
then they massage it computationally so that they transmit even
less data to perform regeneration.

Research on regenerating codes is both active and prolific.
Please see the bibliography for summaries and examples.

Recent Work #3: Non-MDS Codes
A non-MDS code does not tolerate all combinations of m failures,
and therefore the fault-tolerance is not optimal for the amount of
extra storage committed to erasure coding; however, relaxation
of the MDS property is typically accompanied by performance
improvements that are impossible to achieve with MDS codes. I
give a few examples here.

Flat XOR codes are simple codes where w=1. When m > 1, they
are non-MDS; however, they have attractive features in com-
parison to their MDS counterparts. First, since w=1, they are
based solely on the XOR operation—no Galois Field arithmetic is
required. Second, they reduce both the I/O and the CPU com-
plexity of encoding and decoding. When k and m grow to be very
large (in the hundreds or thousands), flat XOR codes like Tor-
nado and Raptor codes provide good degrees of fault-tolerance,
while only requiring small, constant numbers of I/Os and XORs

Figure 3: The RDP array code with the following parameters: k=4, m=2
(RAID-6), n = k+m = 6, r=4, w=1. The gray lines depict the coding
 equations for the P disk. The other lines depict the coding equations for
the Q disk.

Figure 4: Recovering from a single failure in RDP. Only 12 bits are required,
as opposed to 16 bits when one recovers solely from the P disk.

48  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Erasure Codes for Storage Systems

for encoding and decoding. This is as opposed to an MDS code,
which necessarily requires O(k) I/Os and arithmetic operations.
Other non-MDS codes that reduce complexity and rely solely on
XOR are HoVeR, WEAVER, and GRID.

A second important class of non-MDS codes partitions the data
words into groups, and divides the coding words into “local
parities” and “global parities.” Each local parity word protects
a single group of data words, whereas each global parity word
protects all of the words. The system is then fault-tolerant to
a certain number of failures per data group, plus an additional
number of failures for the entire system. The computational and
I/O costs are smaller than an MDS system, yet the failure cover-
age is provably optimal for this coding paradigm. Examples of
these codes are LRC codes that are implemented in Microsoft’s
Azure storage system, an identically named but different LRC
code that has an open-source implementation in Hadoop, and
Partial-MDS codes from IBM.

Finally, Sector-Disk (SD) codes are a class of non-MDS codes
where m disks and s sectors per stripe are dedicated to fault-tol-
erance. An example is drawn in Figure 5, where a 6-disk system
requires each disk to hold four words in its stripe. Two disks
are devoted to fault-tolerance, and two additional words in the
stripe are also devoted to fault-tolerance. The codes are designed
so that they tolerate the failure of any two disks and any two
additional words in the stripe. Thus, their storage overhead and
fault-tolerance match the mixed failure modes of today’s disks,
where sector failures accumulate over time, unnoticed until a
disk failure requires that they be read for recovery.

Conclusion
In this article, I have presented how erasure codes are leveraged
by storage systems to tolerate the failure of disks, and in some
cases, parts of disks. There are simple erasure codes, such as
RAID-4/5 and Reed-Solomon codes, that view each disk as hold-
ing a single w-bit word, and define the coding words as linear

combinations of the data words, using either XOR or Galois Field
arithmetic. Array codes view each disk as holding multiple w-bit
words, and achieve richer fault-tolerance, especially for codes
based solely on the XOR operation. More recent work has focused
on reducing the disk and network I/O requirements of the era-
sure codes, and on loosening the fault-tolerance requirements of
the codes to improve performance.

Annotated Bibliography
In this section, I provide reference material for the various
topics in the article. The following papers provide reference on
implementing Galois Field arithmetic for erasure coding, includ-
ing how to use vector instructions to accelerate performance
drastically. The paper by Anvin [5] details the Linux RAID-6
implementation of Reed-Solomon coding.

[1] K. Greenan, E. Miller, and T. J. Schwartz. Optimizing Galois
Field arithmetic for diverse processor architectures and applica-
tions. In MASCOTS 2008: 16th IEEE Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication
Systems, Baltimore, MD, September 2008.

[2] J. Luo, K. D. Bowers, A. Oprea, and L. Xu. Efficient software
implementations of large finite fields GF(2n) for secure storage
applications. ACM Transactions on Storage 8(2), February 2012.

[3] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tol-
erance in RAID-like systems. Software—Practice & Experience
27(9):995–1012, September 1997.

[4] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast
Galois Field arithmetic using Intel SIMD instructions. In FAST-
2013: 11th USENIX Conference on File and Storage Technolo-
gies, San Jose, February 2013.

[5] H. P. Anvin. The mathematics of RAID-6: http://kernel.org/
pub/linux/kernel/people/hpa/raid6.pdf, 2009.

[6] H. Li and Q. Huan-yan. Parallelized network coding with
SIMD instruction sets. International Symposium on Computer
Science and Computational Technology, IEEE, December 2008,
pp. 364–369.

The following are open-source implementations of Galois Field
arithmetic and erasure coding:

[7] Onion Networks. Java FEC Library v1.0.3. Open source code
distribution: http://onionnetworks.com/fec/javadoc/, 2001.

[8] A. Partow. Schifra Reed-Solomon ECC Library. Open source
code distribution: http://www.schifra.com/downloads.html,
2000-2007.

[9] J. S. Plank, K. M. Greenan, E. L. Miller, and W. B. Houston.
GF-Complete: A comprehensive open source library for Galois

Figure 5: The layout of a stripe with an SD code, which tolerates the fail-
ure of any two disks and any additional two words in the stripe.

www.usenix.org D ece m b er 20 13 Vo l . 3 8 N o. 6 49

SYSADMIN
Erasure Codes for Storage Systems

Field arithmetic. Technical Report UT-CS-13-703, University of
Tennessee, January 2013.

[10] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A
library in C/C++ facilitating erasure coding for storage applica-
tions—Version 1.2. Technical Report CS-08-627, University of
Tennessee, August 2008.

[11] L. Rizzo. Erasure codes based on Vandermonde matri-
ces. Gzipped tar file posted: http://planete-bcast.inrialpes.fr/
rubrique.php3?id_rubrique=10, 1998.

Besides my tutorial on Reed-Solomon coding for storage systems
[3], the textbook by Peterson describes Reed-Solomon coding in
a more classic manner. The papers by Blomer et al. and Rabin
explain the “Cauchy” Reed-Solomon coding construction:

[12] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and
D. Zuckerman. An XOR-based erasure-resilient coding scheme.
Technical Report TR-95-048, International Computer Science
Institute, August 1995.

[13] W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes,
Second Edition. The MIT Press, Cambridge, Massachusetts,
1972.

[14] M. O. Rabin. Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance. Journal of the ACM
36(2):335–348, April 1989.

The following papers describe array codes for RAID-6 that are
based solely on the XOR operation:

[15] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An efficient scheme for tolerating double disk failures in RAID
architectures. IEEE Transactions on Computing 44(2):192–202,
February 1995.

[16] M. Blaum and R. M. Roth. On lowest density MDS codes.
IEEE Transactions on Information Theory 45(1):46–59, January
1999.

[17] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J.
Leong, and S. Sankar. Row diagonal parity for double disk failure
correction. In FAST-2004: 3rd USENIX Conference on File and
Storage Technologies, San Francisco, CA, March 2004.

[18] J. S. Plank, A. L. Buchsbaum, and B. T. Vander Zanden. Mini-
mum density RAID-6 codes. ACM Transactions on Storage 6(4),
May 2011.

Blomer et al.’s paper [12] describes how to convert a standard
Reed-Solomon code into an array code that only uses XORs. The
next three papers describe other general MDS array codes where
w=1:

[19] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with
independent parity symbols. IEEE Transactions on Information
Theory 42(2):529—542, February 1996.

[20] M. Blaum. A family of MDS array codes with minimal num-
ber of encoding operations. In IEEE International Symposium
on Information Theory, Seattle, September 2006.

[21] C. Huang and L. Xu. STAR: An efficient coding scheme for
correcting triple storage node failures. IEEE Transactions on
Computers 57(7):889–901, July 2008.

The following papers reduce the amount of data that must be
read from disk when performing recovery on XOR-based array
codes:

[22] O. Khan, R. Burns, J. S. Plank, W. Pierce, and C. Huang.
Rethinking erasure codes for cloud file systems: Minimizing I/O
for recovery and degraded reads. In FAST-2012: 10th USENIX
Conference on File and Storage Technologies, San Jose, Febru-
ary 2012.

[23] Z. Wang, A. G. Dimakis, and J. Bruck. Rebuilding for array
codes in distributed storage systems. In GLOBECOM ACTEMT
Workshop, pp. 1905–1909. IEEE, December 2010.

[24] L. Xiang, Y. Xu, J. C. S. Lui, and Q. Chang. Optimal recov-
ery of single disk failure in RDP code storage systems. In ACM
SIGMETRICS, June 2010.

The following papers summarize and exemplify research on
regenerating codes:

[25] V. Cadambe, C. Huang, J. Li, and S. Mehrotra. Compound
codes for optimal repair in MDS code based distributed stor-
age systems. In Asilomar Conference on Signals, Systems and
Computers, 2011.

[26] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K.
Ramchandran. Network coding for distributed storage systems.
IEEE Transactions on Information Theory, 2010.

[27] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey
on network codes for distributed storage. Proceedings of the IEEE
99(3), March 2011.

The following papers describe XOR-based, non-MDS codes that
improve the performance of encoding and recovery:

[28] K. M. Greenan, X. Li, and J. J. Wylie. Flat XOR-based era-
sure codes in storage systems: Constructions, efficient recovery
and tradeoffs. In 26th IEEE Symposium on Massive Storage
Systems and Technologies (MSST2010), Nevada, May 2010.

[29] J. L. Hafner. WEAVER Codes: Highly fault tolerant erasure
codes for storage systems. In FAST-2005: 4th USENIX Confer-
ence on File and Storage Technologies, pp. 211–224, San Fran-
cisco, December 2005.

50  D ece m b er 20 13 Vo l . 3 8 N o. 6 www.usenix.org

SYSADMIN
Erasure Codes for Storage Systems

[30] J. L. Hafner. HoVer erasure codes for disk arrays. In DSN-
2006: The International Conference on Dependable Systems and
Networks, Philadelphia, June 2006.

[31] M. Li, J. Shu, and W. Zheng. GRID codes: Strip-based era-
sure codes with high fault tolerance for storage systems. ACM
Transactions on Storage 4(4), January 2009.

[32] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and
V. Stemann. Practical loss-resilient codes. In 29th Annual ACM
Symposium on Theory of Computing, pages 150–159, El Paso, TX,
1997. ACM.

[33] A. Shokrollahi. Raptor codes. IEEE Transactions on Infor-
mation Theory, pages 2551–2567, 2006.

The following papers describe non-MDS erasure codes that
feature local and global parity words and address cloud storage
systems or mixed failure modes in RAID systems:

[34] M. Blaum, J. L. Hafner, and S. Hetzler. Partial-MDS codes
and their application to RAID type of architectures. IEEE
Transactions on Information Theory, July 2013.

[35] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J.
Li, and S. Yekhanin. Erasure coding in Windows Azure storage.
In USENIX Annual Technical Conference, Boston, June 2012.

[36] J. S. Plank, M. Blaum, and J. L. Hafner. SD codes: Erasure
codes designed for how storage systems really fail. In FAST-
2013: 11th USENIX Conference on File and Storage Technolo-
gies, San Jose, February 2013.

[37] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur. XORing ele-
phants: Novel erasure codes for big data. In 39th International
Conference on Very Large Data Bases, August 2013.

Acknowledgements
The author thanks Rik Farrow for encouraging him to write
this article. This material is based upon work supported by the
National Science Foundation under grant CSR-1016636, and by
an IBM Faculty Research Award. The author is indebted to his
various erasure-coding cohorts and co-authors through the years:
Mario Blaum, Randal Burns, Kevin Greenan, Jim Hafner, Cheng
Huang, Ethan Miller, Jason Resch, Jay Wylie, and Lihao Xu.

In return for being our “eyes and ears” on campus, representatives receive a complimentary membership in
 USENIX with all membership benefi ts (except voting rights), and a free conference registration once a year
(after one full year of service as a campus rep).

To qualify as a campus representative, you must:

■ Be full-time faculty or sta� at a four year accredited university

■ Have been a dues-paying member of USENIX for at least one full year in the past

For more information about our Student Programs, contact
Julie Miller, Marketing Communications Manager, julie@usenix.org

www.usenix.org/students

Professors, Campus Staff, and Students—do you have a USENIX Representative
on your campus? If not, USENIX is interested in having one!

The USENIX Campus Rep Program is a network of representatives at campuses around the world who provide
Association information to students, and encourage student involvement in USENIX. This is a volunteer program,
for which USENIX is always looking for academics to participate. The program is designed for faculty who directly
interact with students. We fund one representative from a campus at a time. In return for service as a campus rep-
resentative, we o� er a complimentary membership and other benefi ts.

A campus rep’s responsibilities include:

■ Maintaining a library (online and in print) of USENIX
publications at your university for student use

■ Distributing calls for papers and upcoming event
brochures, and re-distributing informational emails
from USENIX

■ Encouraging students to apply for travel grants to
conferences

■ Providing students who wish to join USENIX with
information and applications

■ Helping students to submit research papers to
 relevant USENIX conferences

■ Providing USENIX with feedback and suggestions
on how the organization can better serve students

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Subscribe now for instant access!
For only $29.50 per year—less
than $2.50 per issue—you’ll have
access to Linux Journal each
month as a PDF, in ePub & Kindle
formats, on-line and through our
Android & iOS apps. Wherever you
go, Linux Journal goes with you.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE

™

