
50  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

A PyCon Notebook
D A V I D B E A Z L E Y

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly &
Associates, 2013). He is also known as the
creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com/ply/
index.html). Beazley is based in Chicago, where
he also teaches a variety of Python courses. 
dave@dabeaz.com

A s I begin to write this, I’m returning on the plane from PyCon 2013,
held March 13-17 in Santa Clara, California. When I started using
Python some 16 years ago, the Python conference was an intimate

affair involving around a hundred people. This year’s conference featured
more than 2,500 attendees and 167 sponsors—bigger than ever for an event
that’s still organized by the community (full disclaimer, I was also one of the
sponsors). If you couldn’t attend, video and slidedecks for virtually every talk
and tutorial can be found online at http://pyvideo.org and https://speaker-
deck.com/pyconslides.

There are any number of notable things I could discuss about the conference, such as the fact
that everyone received a Raspberry Pi computer, there were programming labs for kids, or
the record-setting conference attendance by women; however, in this article I’m primarily
going to focus on the one project that seems to be taking over the Python universe—namely,
the IPython Notebook project.

If you attend any Python conference these days, you’ll quickly notice the widespread use of
the IPython Notebook (http://ipython.org) for teaching, demonstrations, and day-to-day pro-
gramming. What is the notebook and why are so many people using it, you ask? Let’s dive in.

The IPython Shell
Before getting to the notebook, knowing about the more general IPython project that has
evolved over the past ten years will help. In a nutshell, IPython is an alternative interactive
shell for Python that provides a broad range of enhancements, such as better help features,
tab completion of methods and file names, the ability to perform shell commands easily,
better command history support, and more. Originally developed to support scientists and
engineers, IPython is intended to provide a useful environment for exploring data and per-
forming experiments. Think of it as a combination of the UNIX shell and interactive Python
interpreter on steroids.

To provide a small taste of what IPython looks like, here is a sample session that mixes
Python and shell commands together to determine how much disk space is used by different
types of files in the current working directory:

bash-3.2$ ipython

Python 2.7.3 (default, Dec 10 2012, 06:24:09)

Type “copyright”, “credits” or “license” for more information.

IPython 0.13.1 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython’s features.

%quickref -> Quick reference.

help -> Python’s own help system.

object? -> Details about ‘object’, use ‘object??’ for extra details.

In [1]: cd ~

/Users/beazley

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 51

COLUMNS
A PyCon Notebook

In [2]: ls

Desktop/ Junk/ Music/ Public/ Tools/

Documents/ Library/ Pictures/ Sites/

Downloads/ Movies/ Projects/ Teaching/

In [3]: cd Pictures

/Users/beazley/Pictures

In [4]: import collections

In [5]: import os

In [6]: size_by_type = collections.Counter()

In [7]: for path, dirs, files in os.walk(‘.’):

 ...: for filename in files:

 ...: fullname = os.path.join(path, filename)

 ...: if os.path.exists(fullname):

 ...: _, ext = os.path.splitext(filename)

 ...: sz = os.path.getsize(fullname)

 ...: size_by_type[ext.upper()] += sz

 ...:

In [8]: for ext, sz in size_by_type.most_common(5):

 ...: print ext, sz

 ...:

.JPG 50389086278

.MOV 38328837384

.AVI 9740373284

.APDB 733642752

.DATA 518045719

In [9]:

As you can see, a mix of UNIX shell commands and Python
statements appear. The “In [n]:” prompt is the interpreter prompt
at which you type commands. This prompt serves an important
purpose in maintaining a history of your work. For example, if
you wanted to redo a previous sequence of commands, you could
use rerun to specify a range of previous operations like this:

In [9]: cd ../Music

/Users/beazley/Music

In [10]: rerun 6-8

=== Executing: ===

size_by_type = collections.Counter()

for path, dirs, files in os.walk(‘.’):

 for filename in files:

 fullname = os.path.join(path, filename)

 if os.path.exists(fullname):

 _, ext = os.path.splitext(filename)

 sz = os.path.getsize(fullname)

 size_by_type[ext.upper()] += sz

for ext, sz in size_by_type.most_common(5):

 print ext, sz

=== Output: ===

.M4A 9704243754

.MP3 2849783536

.M4P 2841844039

.M4V 744062510

.MP4 573729448

In [11]:

Or, if you wanted to save your commands to a file for later edit-
ing, you could use the save command like this:

In [11]: cd ~

/Users/beazley

In [12]: save usage.py 4-8

The following commands were written to file `usage.py :̀

import collections

import os

size_by_type = collections.Counter()

for path, dirs, files in os.walk(‘.’):

 for filename in files:

 fullname = os.path.join(path, filename)

 if os.path.exists(fullname):

 _, ext = os.path.splitext(filename)

 sz = os.path.getsize(fullname)

 size_by_type[ext.upper()] += sz

for ext, sz in size_by_type.most_common(5):

 print ext, sz

In [13]:

Should you be inclined to carry out more sophisticated shell
operations, you can usually execute arbitrary commands by
prefixing them with the exclamation point and refer to Python
variables using $ variable substitutions. For example:

You can capture the output of a shell command by simply
assigning it to a variable:

In [15]: out = !lsof -p$pid -F n

In [16]: out

Out[16]:

[‘p8686’,

 ‘n/Users/beazley/Desktop/UsenixLogin/beazley_jun_13’,

In [13]: pid = os.getpid()

In [14]: !lsof -p$pid

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

Python 8686 beazley cwd DIR 14,2 238 2805734 /Users/...

Python 8686 beazley txt REG 14,2 12396 2514070 /Library/...

...

In [15]:

52  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
A PyCon Notebook

 ‘n/Library/Frameworks/Python.framework/Versions/7.3/Python’,

 ...

]

In [17]:

This session gives you a small glimpse of what IPython is about
and why you might use it; however, this is not the IPython
Notebook.

From the Shell to the Notebook
Imagine, if you will, the idea of taking the above shell session and
turning it into a kind of interactive document featuring execut-
able code cells, documentation, inline plots, and arbitrary Web
content (images, maps, videos, etc.). Think of the document as
the kind of content you might see written down in a scientist’s
lab notebook. Well, that is basically the idea of the IPython
Notebook project. Conveying the spectacle it provides in print is

a little hard, so a good place to start might be some of the videos
at http://pyvideo.org.

To get started with the IPython notebook yourself, you’ll need
to spend a fair bit of time fiddling with your Python installa-
tion. There are a number of required dependencies, including
pyzmq (https://pypi.python.org/pypi/pyzmq/) and Tornado
(https://pypi.python.org/pypi/tornado). Additionally, to real-
ize all of the IPython notebook benefits, you’ll need to install a
variety of scientific packages, including NumPy (http://numpy.
org) and matplotlib (http://matplotlib.org). Frankly, working
with a Python distribution in which it’s already included, such
as EPDFree (http://www.enthought.com/products/epd_free.
php) or Anaconda CE (http://continuum.io/anacondace.html), is
probably easier. If you’re on Linux, you might be able to install the
required packages using the system package manager, although
your mileage might vary.

Figure 1: Notebook works with IPython, and at first appears not that different from using IPython alone

www.usenix.org J U N E 20 13 VO L . 3 8 N O. 3 53

COLUMNS
A PyCon Notebook

Assuming you have everything installed, you can launch the
notebook from the shell. Go to the directory in which you want to
do your work and type “ipython notebook”. For example:

bash $ ipython notebook

[NotebookApp] Using existing profile dir: u’/Users/beazley/.

ipython/profile_default’

[NotebookApp] Serving notebooks from /Users/beazley/Work

[NotebookApp] The IPython Notebook is running at:

http://127.0.0.1:8888/

[NotebookApp] Use Control-C to stop this server and shut down

all kernels.

Unlike a normal session, the Notebook runs entirely as a server
that needs to be accessed through a browser. As soon as you
launch it, a browser window like the one in Figure 1 should appear.

If you click on the link to create a new notebook, you’ll be taken
to a page on which you can start typing the usual IPython com-
mands, as in Figure 1.

At this point, the notebook doesn’t seem much different from the
shell; however, the benefits start to appear once you start edit-
ing the document. For example, unlike the shell, you can move
around and edit any of the previous cells (e.g., change the code,
re-execute, delete, copy, and move around within the document).
You can also start to insert documentation at any point in the
form of Markdown. Figure 2 shows the above session annotated
with some documentation.

Assuming you’ve installed matplotlib and NumPy, you can also
start making inline plots and charts. For example, Figure 3
shows what it looks like to take the file-usage data and make a
pie chart.

Needless to say, the idea of having your work captured inside a
kind of executable document opens up a wide range of possibili-
ties limited only by your imagination. Once you realize that
these notebooks can be saved, modified, and shared with others,
why the notebook project is quickly taking over the Python uni-
verse starts to become clear. In that vein, I’ve shared the above

Figure 2: Notebook includes the ability to document what appears in a notebook, using Markdown (https://pypi.python.org/pypi/Markdown)

54  J U N E 20 13 VO L . 3 8 N O. 3 www.usenix.org

COLUMNS
A PyCon Notebook

notebook at http://nbviewer.ipython.org/5244469. You can go
there to view it in more detail.

Other Notable PyCon Developments
Although this article has primarily focused on IPython, a few
other notable developments were featured at the recent con-
ference. First, there seems to be a general consensus that the
mechanism currently used to install third-party packages (the
procedure of typing python setup.py install) should probably
die. How that actually happens is not so clear, but the topic of
packaging is definitely on a lot of people’s minds. Somewhat
recently, a new binary packaging format known as a “wheel file”
appeared and is described in PEP-427 (http://www.python.org/
dev/peps/pep-0427/). Although I have yet to encounter wheels in
the wild, it’s something that you might encounter down the road,
especially if you’re the one maintaining a Python Installation.

Also worthy of note is the fact that Python seems to be gaining a
standard event loop. Over the past several years, there has been

growing interest in asynchronous and event-driven I/O librar-
ies (e.g., Twisted, Tornado, GEvent, Eventlet, etc.) for network
programming. One of the benefits of such libraries is that they
are able to handle a large number of client connections, without
relying on threads or separate processes. Although the standard
library has long included the asyncore library for asynchronous
I/O, nobody has ever been all that satisfied with it; in fact, most
people seem to avoid it.

Guido van Rossum’s keynote talk at PyCon went into some depth
about PEP 3156 (http://www.python.org/dev/peps/pep-3156/),
which is a new effort to put a standard event loop into the stan-
dard library. Although one wouldn’t think that an event loop
would be that exciting, it’s interesting in that it aims to stan-
dardize a feature that is currently being implemented separately
by many different libraries that don’t currently interoperate
with each other so well. This effort is also notable in that the
PEP involves the use of co-routines and requires Python 3.3 or
newer. Could asynchronous I/O be the killer feature that brings
everyone to Python 3? Only time will tell.

Figure 3: Notebook works with matplotlib and NumPy so you can include inline plots and charts

