
; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E XTR AC TI N G TH E L E S S O N S O F M U LTI C S 57

J O N A T H A N S . S H A P I R O

extracting the
lessons of Multics
Jonathan Shapiro is an assistant professor at Johns
Hopkins University. His research interests focus on
operating systems and system security. He is also a
recidivist entrepreneur and has seen the development
of several products from technical concept to market.

shap@eros-os.org
http://www.eros-os.org/~shap

T H E K E Y N O T E S P E A K E R F O R T H I S
year’s USENIX Security Conference was Earl
Boebert, a key participant in the Multics
project. Interspersed with pointed (and
painfully accurate) insights about the state
of the computing field, Dr. Boebert’s talk
focused on the structure of the Multics sys-
tem, its key features, how many security
problems it didn’t have, and how little has
been learned from it in the intervening 40
years. Karger and Schell made much the
same claim in their retrospective paper.1 In
spite of being one of the best documented
early operating system projects in
existence,2 and a staggeringly innovative
effort in its own right, Multics is primarily
remembered today as the system whose
cost and ongoing delays caused Bell Labs to
withdraw from the Multics collaboration
and ultimately led Thompson, Ritchie,
McIlroy, and Ossana to start the UNIX proj-
ect. It seems fitting to try to answer the
question Boebert posed in his talk: What can
we learn from the past? Why did Multics
fail?

The Multics project was proposed in 1962 by J.C.R.
Licklider (the founder of DARPA) as part of his com-
mitment to connected, multi-user computing. It was a
year of dramatic invention. The notion of computer-
supported collaboration, and therefore multi-user,
time-shared computing in some form, was definitely
“in the ether.” Doug Engelbart and Ted Nelson would
independently invent hypertext in 1962.3 Berkeley,
Dartmouth, and several other groups were exploring
time-sharing systems, and 1962 was also the year that
brought us Spacewar, the first computer game. The
mouse would come shortly as Engelbart gained experi-
ence with Augment and, later, NLS (early hypertext
systems). In the middle of this, a bunch of technolo-
gists decided to invent the modern computing utility.
The Multics contract was awarded by DARPA in
August 1964.

While few of the major innovations embodied in the
Multics system were original to Multics, it was proba-
bly the first attempt to integrate so many ideas effec-
tively. Virtual memory, segment-based protection, a
hierarchical file system, shared memory multiprocess-
ing, security, and online reconfiguration were all incor-
porated into the Multics design. Multics may have

58 ; L O G I N : V O L . 2 9 , N O . 6

been the first system implemented primarily in a high-level programming lan-
guage, and it was one of the first to support multiple programming languages for
creating applications. MACLISP, troff, and many other early tools trace their ori-
gins to the Multics system, as does much of the modern UNIX command line.
Multics originated the term “computer utility,” a concept that we have yet to
fully explore 40 years later The integrated circuit was patented in 1959 and by
1963 was just entering the scene in the form of the 7400-series logic parts. Vol-
ume customers might soon expect to get as many as four gates on a single chip. .
Considered in the context of then-available electronics technology, Multics was
an incredible undertaking.

Today, we take for granted (at least, we say we do) many of the software tech-
niques pioneered in the Multics effort. Multics was one of the first attempts at
serious software engineering in a large, general-purpose system. It established
the use of small, enforcedly encapsulated (isolated) software components (sub-
systems) that could be invoked only through their published interfaces. Using
this fundamental building block, the Multicians crafted an end-to-end design
that was both robust and secure. Even a casual reading of the Orange Book
(TCSEC) standard reveals that many of the ideas of the Orange Book originated
in either the Multics architecture or the Multics software process.

A skeptic might be prompted to ask, “If Multics was so wonderful, why aren’t we
using it today?” It is tempting to think, as Boebert implies, that Multics was a
victim of the American desire for “crap in a hurry,” and that this did not allow
for the emphasis on quality engineering that delayed the completion of Multics.
The truth, I suspect, is a matter of economics rather than bad taste. Multics was
largely doomed by the intersection of two forces: the exploding growth of the
computer and semiconductor industries, and a rising national sensibility of indi-
vidual empowerment that brought, inevitably, the trend toward decentralized
computing.

Exponential advances in integrated circuit design conspired against the Multics
effort. In 1962, Fairchild Semiconductor was still shipping individual transis-
tors, and this was “state of the art.” By the time Bell Labs withdrew from the
Multics project in 1969, Intel was shipping 64-bit memory chips. By the time
Multics was presented commercially in 1973, Digital Equipment Corporation
was shipping entry-level versions of PDP-11 systems running either RSTS-11 or
RSX-11. DEC would ship the LSI-11 and the PDP-11/70 two years later, and in
doing so would establish the features that would ultimately define mid-range
computer architecture. In the microprocessor world, the 8080 would be running
early versions of CP/M by 1974. A new era had arrived.

When it was announced in 1973, Multics was arguably the perfect answer to the
problems of 1964, but it was too late, too expensive, too dependent on a propri-
etary hardware architecture, and too focused on centrally shared computing to
be relevant in a world where decentralized, departmental computing was
becoming the order of the day. Following the pattern of every other competitive
market in history, the mainframe was being commoditized from below, and the
era of “personal computing” would soon take over the world. Key elements of
Multics—virtual memory, the hierarchical file system, multiple user support,
and, to a lesser degree, online reconfiguration—would be rediscovered and
incrementally introduced on Digital’s VAX line of hardware, burdened at each
step with the requirements of backwards compatibility. The same process of
reinvention is happening now as Microsoft reshapes the underlying PC standard
to support advanced server and management features. Not until the arrival of
universal, always-on connectivity would the lessons of Multics once again seem
relevant.

Ultimately, Multics failed because high-end computer-architecture ideas consoli-
dated around the VAX and System 360 feature set, and shifted away from fea-

; LO G I N : D E C E M B E R 2 0 0 4 S E C U R IT Y: E XTR AC TI N G TH E L E S S O N S O F M U LTI C S 59

tures such as segmentation and multiple protection rings, on which Multics
relied. This left the Multics operating system nonportable and unable to exploit
the shift to cheaper, more open hardware systems. Unfortunately, it occurred at a
time when circuit integration still wasn’t far enough along to support basic pro-
tection features on low-end microprocessors. A decade later, UNIX would bene-
fit from being able to ride a more stable, mature technology curve, reaping bene-
fit from the same forces that doomed the Multics effort.

Sadly, later systems would show that neither segmentation nor multilevel pro-
tection rings were necessary. A simple user/supervisor split coupled with a
paged memory management unit is sufficient. The Gemini project would con-
struct an A1-certifiable operating system on a 386-class microprocessor. Key-
KOS would provide Multics-comparable levels of robustness and security on
commodity microprocessors. The EROS research effort has directly adopted
many of these ideas. They seem to be contagious—the L4 project is now adopt-
ing many of them as well.4 The “lots of small, protected memory objects” ap-
proach of Multics is reframed in KeyKOS, EROS, and successors as a “lots of
small, protected processes” approach, which has stood up well to both formal
and practical testing.

Unfortunately, neither UNIX nor Microsoft Windows managed to preserve (or
successfully replace) the key security underpinnings of Multics, and we are now
committed to a large body of insecure legacy software that will be difficult to
overcome at a time when software patents make overcoming an entrenched
legacy provider nearly impossible.

Given the economic and technology environment into which it emerged, the
wonder of Multics is not that it has been ignored, but that so many of its key
ideas have been adopted and adapted so pervasively in later efforts. Multics
largely defined modern time-sharing systems, and its influence can be seen in
every multi-user system that is shipping today.

F U RTH E R R EA D I N G
1. Paul A. Karger and Roger R. Schell, “Thirty Years Later: Lessons from the Multics
Security Evaluation.” Proceedings of the 18th Annual Computer Security Applications Con-
ference (ACSAC) (December 2002)

2. Elliot I. Oganick, The Multics System: An Examination of Its Structure (Cambridge, MA:
MIT Press, 1972). The best starting point today for information about the Multics system
is the Multicians’ Web site at http://www.multicians.org.

3. D.C. Engelbart, “Augmenting Human Intellect: A Conceptual Framework” (Stanford
Research Institute, 1962); see Theodor H. Nelson, Literary Machines 931 (Mindful Press,
1982)

4. KeyKOS: http://www.cis.upenn.edu/~KeyKOS; EROS: http://www.eros-os.org.
L4: http://www.l4ka.org.

