
	6    ;login:  VOL. 36, NO. 2

PROGRAMMING
How do you write a program that runs across hundreds or thousands of computers?
As data sources have proliferated, this question has spread beyond the domain of a
few large search engines to become a concern for a variety of online services, large
corporations, and academic researchers. This article introduces Skywriting and
CIEL, which are, respectively, a programming language and a system designed to
run a large class of algorithms on a commodity cluster.

Large-scale data processing requires parallelism, and useful parallelism requires
coordination between processes. In a shared-memory system, coordination might
involve updating a shared variable or signaling a condition variable; in a distrib-
uted system there is no shared memory, so processes communicate by sending
messages. However, explicit message passing (using network sockets or a library
such as MPI) is ill-suited to large commodity clusters, because it requires the
programmer to specify the recipient host for every message. In these clusters,
machines often go offline due to failure or planned maintenance, or they may be
reassigned to another user. In general, cluster membership is far more dynamic
than the supercomputers for which explicit message-passing libraries were first
developed, and maintaining cluster membership information manually is a chal-
lenging distributed consensus problem.

The challenges of programming in a distributed system have led to the rise of
distributed execution engines. These systems also send messages internally, but
they virtualize the cluster resources beneath a high-level programming model. In
2004, Google announced MapReduce, which requires the implementation of just
two functions—map() and reduce()—and frees the developer from having to imple-
ment parallel algorithms, distributed synchronization, task scheduling, or fault
tolerance. Hadoop (an open-source implementation of MapReduce) was released
soon afterwards, and has become widely used in many organizations, including
Amazon, eBay, Facebook, and Twitter. In 2007, Microsoft published Dryad, which
is a generalization of MapReduce that supports a broader class of algorithms,
including relational-style queries with joins and multiple stages.

Most distributed execution engines divide computations into tasks, which are
atomic and deterministic fragments of code that run on a single host. The power
of an execution engine comes from its ability to track dependencies between tasks,
and hence coordinate their execution and data flow. In increasing order of power,
these dependency structures include:

Skywriting on CIEL
Programming the Data Center

D E R E K G . M U R R A Y A N D S T E V E N H A N D

Derek G. Murray is currently

completing his PhD at the

University of Cambridge

Computer Laboratory. Derek

leads the CIEL project, which forms the

basis of his thesis research into expressive

programming models for distributed

computation. At other points, his research

interests have included OS virtualization,

compiler optimization, and

high-performance computing.

Derek.Murray@cl.cam.ac.uk

Steven Hand is a Reader in

Computer Systems at the

University of Cambridge

Computer Laboratory. His

interests span the areas of operating systems,

networks, and security.

Steven.Hand@cl.cam.ac.uk

	 ;login:  APRIL 2011   Skywriting on CIEL    7

1. 	 Bag of tasks. In the simplest model, a job is divided into independent tasks, and
terminates when all tasks have completed. For example, in SETI@home, the
tasks are digitized chunks of radio transmissions, to which the same analyses are
applied in parallel.

2. 	 Fixed dependencies. There are task dependencies, but they are not controlled
by the programmer. For example, in MapReduce, there are only two classes of
task: map tasks and reduce tasks. By definition, reduce tasks consume the output
of map tasks, so they must run after all map tasks have completed.

3. 	 Explicit dependencies. The dependencies between tasks are programmer-
controlled, and form an arbitrary directed acyclic graph (DAG). For example, in
Dryad, a job is specified as a graph of vertices (representing the behavior of tasks)
and channels (representing data flow between vertices).

Each successive model includes the previous one as a special case. Conversely, a
more powerful system can be simulated using a driver program outside the cluster
that submits multiple jobs to a less powerful system. Nevertheless, the advantage
of a more powerful system is that the whole job enjoys the benefits of running on an
execution engine, especially fault tolerance. The problem is that the most powerful
model—explicit dependencies—requires all tasks and dependencies to be declared
in advance, which limits the set of algorithms it can represent.

Many algorithms in machine learning, graph theory, and linear algebra are
iterative, which means that they loop—performing some work in parallel—until
they reach a fixed point. This means that the number of tasks cannot be known
in advance. To support these algorithms on an execution engine, we introduce
dynamic dependencies:

4. 	 Dynamic dependencies. The dependencies between tasks are programmer-
controlled and form an arbitrary DAG. However, each task may choose either to
publish its outputs or spawn child tasks and delegate production of its outputs to
one or more of its children.

The dynamic dependencies model supports iterative algorithms: one task imple-
ments the convergence test and either produces the current result or spawns
another iteration. It also trivially supports all of the less powerful models. How-
ever, this raises the problem of how to specify a job that includes dynamic depen-
dencies.

The Skywriting Scripting Language

To solve this problem, we created Skywriting, a scripting language for specifying
dynamic dependency graphs. The language has three defining features:

♦	 Skywriting is a “full” programming language (i.e., it is Turing-complete).
♦	 A Skywriting script can spawn parallel tasks at any point in its execution.
♦	 Any valid Skywriting script can be transformed into a dynamic dependency graph.

As a result, Skywriting is well suited to specifying jobs that run on CIEL (see the
next section). Skywriting is interpreted, dynamically typed, and based on a C-like
syntax. The language includes imperative control-flow constructs such as while
loops and if statements, but it also includes first-class functions, which enables a
functional style of programming. Figure 1 (next page) shows an implementation of
a parallel Fibonacci algorithm, which illustrates the main syntactic features of the
language (although the algorithm used is extremely inefficient).

	8    ;login:  VOL. 36, NO. 2

function fib (n) {

 if (n <= 1) {

 return n;

 } else {

 x = spawn(fib, [n - 1]);

 y = spawn(fib, [n - 2]);

 return *x + *y;

 }

}

return fib(10);

Figure 1: Complete Skywriting script for computing the 10th Fibonacci number

The spawn() function creates a new parallel task. The first argument is a callable
object: in the example, it is the name of a function (fib), but it could alternatively
be an anonymous function or lambda expression. The second argument is a list of
arguments that will be passed to the function in the new task. The return value
from spawn() is a future, which can be passed to other invocations of spawn() in
order to build a task dependency graph.

The return statement publishes the given expression as a task output. At the top
level, a return statement publishes the overall job output. In a spawned function,
a return statement publishes the current task’s output. However, as you might
expect, a return statement within a called function simply returns the value of the
given expression to the caller.

Applying the * (dereference) operator to a future causes the current task to block
until the producing task has returned the relevant value. In Figure 1, both x and y
are futures, so the expression (*x + *y) will block the current task until both val-
ues are available. Although a task logically “blocks” when it dereferences a future,
the runtime system actually creates a new task, which is called a continuation task.
The current task delegates its output to the continuation task and adds dependen-
cies on the dereferenced values. Therefore, the *-operator in Skywriting helps the
programmer to build jobs with data-dependent control flow, without having to
construct the dynamic dependencies manually.

Handling Larger Data

As an interpreted language, Skywriting is well suited to building coarse-grained
task graphs, but less ideal for compute- or I/O-intensive work. Therefore the
language includes mechanisms for handling large objects and executing external
code. Figure 2 shows the implementation of a simple script that invokes external
code to count the words in three Web pages.

The ref() function creates a reference to the given URL. Like a pointer in C, a refer-
ence is a handle to a potentially large object, and references may be exchanged
efficiently between tasks. In Figure 2, the references refer to publicly accessible
HTTP servers, but it is more common to use the ciel:// URL scheme to refer to
objects stored in the cluster (see the next section).

The exec() function synchronously invokes some external code. (There is also a
spawn_exec() function which creates a task to invoke some external code asynchro-
nously and takes the same arguments as exec().) The first argument is the name of
an executor, which is effectively a loader for the invoked code. In Figure 2, the execu-
tor is stdinout, which is used to run legacy UNIX utilities that communicate using

	 ;login:  APRIL 2011   Skywriting on CIEL    9

standard input and output files. Other executors exist for Java and .NET classes.
The second argument is the args dictionary, which contains executor-specific
arguments: inputs is a list of references that will be concatenated and piped into
standard input; command_line is the argv array for the process to be executed.
The third argument controls the number of outputs: exec() returns a list contain-
ing one reference for each output. Note that calls to exec() are typically wrapped in
a library function (e.g., stdinout(), java()) that sets the arguments appropriately.

news_sites = [�ref(“http://www.bbc.co.uk/news/”),

ref(“http://www.cnn.com/”),

ref(“http://www.foxnews.com/”)];

function word_count (doc) {

 result = exec�(“stdinout”,

{“inputs” : [doc], “command_line” : [“wc”, “-w”]}, 1)[0];

 return *result;

}

total = 0;

for (site in news_sites) {

 total += word_count(site);

}

return total;

Figure 2: Complete Skywriting script for invoking wc on three Web pages

Since the aim of Skywriting is to support data-dependent control flow, it must be
possible for a script to interrogate the output of a call to exec(). Therefore, the * oper-
ator can also be applied to a reference, which has the effect of loading the value into
the script context. In Figure 2 the * operator is applied to the result of `wc -ẁ , which
is an ASCII-encoded integer. Skywriting expects that a dereferenced reference is
a valid value in JavaScript Object Notation (JSON). JSON resembles the syntax of
Skywriting, and JSON parsers and generators exist for most popular languages.

CIEL: A Universal Execution Engine

To run Skywriting scripts on a cluster, we needed an execution engine that can
handle dynamic dependencies: therefore we also developed CIEL, which is a uni‑
versal execution engine. CIEL is universal in two senses: informally, because its
execution model supports all existing task-parallel execution models, and formally,
because the language for specifying the coordination between tasks (i.e., Skywrit-
ing) is Turing-complete.

Like many other execution engines, CIEL uses a master-worker architecture
(Figure 3, next page). The central master schedules tasks for execution: it is similar
to the JobTracker in Hadoop or the Job Manager in Dryad. The master stores
metadata about the tasks and objects in the system and the (potentially dynamic)
dependencies between them. The scheduler identifies when tasks become runnable
and chooses where to run them, using a policy that reduces the amount of data
copied across the network.

A CIEL cluster also includes several workers, which execute tasks and store data
objects. When a task arrives at a worker, it is dispatched to the relevant execu-
tor, which corresponds to the notion of an executor in the Skywriting exec() and
spawn_exec() functions. The executor retrieves the task’s dependencies and
makes them available to the invoked code in an appropriate manner. For example,

	10    ;login:  VOL. 36, NO. 2

the stdinout executor forks a process to run a given command-line and writes the
dependencies in turn to standard input; the Java executor exposes the dependen-
cies as InputStream objects.

Figure 3: A CIEL cluster has one master and several workers. Arrows indicate
communication between components; thicker arrows represent higher-bandwidth
transfers.

Each worker also has an object store, which is backed by disk storage. CIEL uses
objects to represent the input data, intermediate data, and results of each job. An
object can contain arbitrary binary data, or it may be more structured (e.g., JSON
format). Together, the master and the object stores form a simple distributed file
system: every object has a unique name, but identical objects on different machines
can share the same name, which enables replication. CIEL includes tools for trans-
ferring data into and out of a cluster, with support for replication and partitioning.
Once loaded into the cluster, an object may be referenced from a Skywriting script
using the ref() function and the ciel:// URL scheme (Figure 4). A common pat-
tern involves partitioning a file into several objects, then storing an index object
that contains a list of references to the partitions. This is useful for specifying
MapReduce-style jobs over large input data with many partitions.

ciel://[<HOSTNAME>:<PORT>]/<OBJECT_ID>

Figure 4: Syntax of a ciel:// URL. If the hostname and port are omitted or become
stale, the local master is consulted for up-to-date location information.

The main advantage of supporting dynamic dependency graphs in the execution
engine is that CIEL can provide transparent fault tolerance across a whole job,
including the data-dependent steps. CIEL provides fault tolerance for the cli-
ent, workers, and master. Client fault tolerance is trivial, since there is no driver
program running on the client, and so it plays no further part once it has submitted
a job (except to collect the results). Worker fault tolerance is achieved by re-execut-
ing any tasks currently running on a failed worker, and recursively re-executing
tasks to recreate any missing intermediate data. CIEL supports master fault toler-
ance by persistently logging messages from the workers, including spawned tasks
and produced outputs: when the master comes back online, it can reconstruct its
internal state by replaying the log.

Worker

Master

Tasks Objects

Scheduler

Object store

Java .NET

stdinout

SW

environ

spawn publish

submit job

Object store

Client

jo
b

 in
p

ut
s/

o
ut

p
ut

s

Worker

remote read

	 ;login:  APRIL 2011   Skywriting on CIEL    11

Conclusion

We originally developed CIEL as a successor to systems like MapReduce, Hadoop,
and Dryad, which run on large commodity clusters. Our performance evaluation,
which is presented in a paper at NSDI ’11, demonstrates that CIEL can achieve
performance equal to or better than a less expressive system such as Hadoop.
Performing control flow within the cluster leads to better performance and fault
tolerance, by removing the need for a driver program outside the cluster.

We are now exploring other parts of the design space for dynamic dependency
graphs. Skywriting and CIEL are suitable for coarse-grained parallelism on
loosely coupled clusters, but other parallel computing platforms are emerging. For
example, the performance trade-offs for manycore SMP and non-cache-coherent
processors are very different from a cluster, but these platforms can also benefit
from a simpler programming model than shared-memory multi-threading or
explicit message passing. Therefore we are developing a more lightweight version
of CIEL that can support finer-grained parallelism on multicore machines. We
are also applying the ideas of Skywriting to other languages, including Python,
Java, Scala, and OCaml, with the aim of combining coordination and computation
in a single, efficient language. Ultimately, we predict that future clusters will be
built from servers containing manycore processors, and the techniques we have
described here will be useful for dealing with parallelism at multiple scales.

Acknowledgments and References

We would like to thank the other members of the CIEL team: Anil Madhavapeddy,
Malte Schwarzkopf, Steven Smith, and Chris Smowton.

A deeper introduction to CIEL and Skywriting, including implementation details
and performance evaluation, can be found in Derek G. Murray, Malte Schwarz-
kopf, Christopher Smowton, Steven Smith, Anil Madhavapeddy, and Steven Hand,
“CIEL: A Universal Execution Engine for Distributed Data-Flow Computing,” in
Proceedings of NSDI ’11.

CIEL and Skywriting are available for download from our project Web site, which
includes tutorials and example applications: http://www.cl.cam.ac.uk/netos/ciel/.

