
	18    ;login:  VOL. 36, NO. 2

In 2008, we were both working for the Faculty of Arts and Sciences at Harvard
University when it became clear that we needed a better way to manage our syslog
environments. We both needed a centralized repository for logs that was easily
searchable, scalable, and had the ability to produce graphs and reports. We began
experimenting with Splunk, and over time we added more and more log sources.
Today, we have a vastly improved log management and reporting system, which was
the result of a few phased learning periods, with a couple of surprises along the way.

While we quickly realized the benefits of combining our Network and Systems
syslog architectures, sharing a common architecture in this fashion was a first for
our groups. We were presented with a few challenges right away:

1. 	 Approval to act on this from our management teams, which historically did not
collaborate in this fashion

2. 	 Role-based log separation
3. 	 Tandem administration of a single application

We were given the green light to proceed, and a new era of collaboration began. We
chose Splunk shortly after running a quick proof of concept within our environ-
ment because we found it to be simple, scalable, and extremely useful.

Splunk runs as a server-side application with two major components. The most
resource-intensive portion of the application is indexing, which involves con-
verting raw event data into searchable events and storing them. The other major
component is searching. Searches can be scheduled to run at specified intervals
and take action when criteria, such as event count, have been reached. The actions
that you can take include sending emails, updating RSS feeds, and executing
scripts. Searches can be very lightweight, involving a small amount of data, or may
take several minutes to complete while searching a month’s worth of data. There-
fore, your server load from scheduled searches can vary greatly depending on your
implementation and the frequency of searches.

A few years into the Splunk implementation and after attending Splunk events and
speaking with other Splunkers, we initiated a common phased approach to imple-
menting the application:

Phase 1—“Just get them in!”
Phase 2—More logs and field extractions
Phase 3—Indexes and agents
Phase 4—Building custom applications

Centralized Logging in a Decentralized
World
J A M E S D O N N A N D T I M H A R T M A N N

James Donn has been

working as a Senior Network

Management Systems

Engineer (NMSE) for the past

four years and is responsible for managing and

monitoring both network devices and servers.

Before this, he worked as an NMSE with HSBC

Bank, USA.

james_donn@harvard.edu

Tim Hartmann’s work

at Harvard University

includes support for

networking, systems, and

services operations. Tim’s current focus

is on automated application and systems

deployment using DevOps as guiding

principles. He is also involved in virtualization

and directory services.

tim_hartmann@harvard.edu

	 ;login:  APRIL 2011   Centralized Logging in a Decentralized World    19

We will look more closely at each of these phases and share some of our experi-
ences during each phase.

Phase 1—“Just get them in!”

Our first step when deploying our centralized logging repository was to gather
as much data as possible and test the application’s ability to process information.
Since both Network and Systems teams already had their own independent instal-
lations of syslog-NG, this was fairly painless. We simply relayed our logs from the
syslog-NG servers to the new Splunk server, using unique relay ports to separate
data.

This allowed us to leverage the source of the logs to configure group-based user
roles and permissions and to share a diverse log pool with Network Engineering,
Systems Administration, Research Computing, Application Development, and
Network Operations teams.

This quick “just get them in” strategy worked very well with Splunk, due to the way
that the application indexes logs and extracts fields. When logs are first received
in Splunk, they are indexed, and only a small number of fields, such as hostname
and time, are extracted. All other fields are usually extracted at search time. This
allows you to build custom field extractions after you have collected logs, without
having to wait for new logs to come in to see the changes. Other applications follow
a different philosophy, where all incoming logs must fit predefined templates or
require custom templates before you can use the data. Both approaches have their
advantages and disadvantages.

The disadvantages to post-processing logs:

♦	 There are no canned reports to start with.
♦	 Becoming familiar with the application and Splunk’s native commands involves

a learning curve.
♦	 You will be reinvesting time into the application as your customer base grows.

The advantages to post-processing the logs:

♦	 You can get started very quickly.
♦	 It allows for greater flexibility when determining exactly what you want to do

with the logs.
♦	 You can change field extractions at any time, without having to worry about your

repository.
♦	 You can build very customized reports and alerts.

After getting the logs in, we set up a dozen rules to look for critical logs and forward
them as SNMP traps to our event management systems. This ultimately replaced
our legacy syslog adapter into the alerting infrastructure, which was much more
difficult to configure and maintain.

Use the Splunk API!

One lesson that we learned in this phase is that the storage location of the raw data
changed during software upgrades. Since our searches could return results for
many devices, we needed to evaluate the results before sending a trap for each, pos-
sibly unique, host. These changes forced us to update our notification scripts a few
times before we started to use Splunk’s RESTful API, which has yet to change.

	20    ;login:  VOL. 36, NO. 2

High-Level Architecture

Initially, our infrastructure consisted of a mirrored set of servers running Red
Hat Enterprise Linux on commodity hardware, with an internal YUM repository
to maintain software deployment and updates. Keeping our architecture simple
allowed us to expand easily and spend more time getting useful information out of
the application, rather than wrestling with the nuances of application management.

Licensing

The application license is based on the amount of data that is processed (indexed)
each day. To ensure that we purchased enough to allow for growth, we combined
the sizes of our daily syslog files and multiplied by 2. This 20 GB/day license would
give us enough room to double the size of our initial footprint.

Our Views Changed

Now that we had collected all of our data, we wanted to see if we could get a pan-
orama of events that we might have missed. In some ways our methodology for
viewing logs started to shift. In our old-world view, we would run large log files
(5+ GB) through a grep pipeline to pull out interesting events and build reports.
Often, we would have to request that other teams perform similar searches against
their logs, and manually correlate the results. In contrast, using our new workflow
we found ourselves viewing larger amounts of combined data, obtaining summary
information, and correlating events much more quickly.

Our initial deployment ran very well for over a year before we started to look into
other ways that we could significantly improve our use of our logging engine. We
already had what we set out to create: a simple and useful, low-maintenance tool.

Phase 2—More Logs and Field Extractions

More Logs!

At this stage, we had an easy-to-use search interface to all of our logs with some
automated alerting. It was immediately evident to all of the engineers that worked
on multiple devices concurrently that “more was better.” We started getting
requests to assist in getting more devices into the application, as well as to expand
to different types of logs.

One challenge we encountered was adding logs from a proprietary application,
which did not log to the system’s syslogger. This forced us to look at using Splunk
as an agent. Neither one of us liked the idea of agents in general; large-scale agent
management and concerns about potential resource constraints drove our opin-
ions. However, we installed a few agents to scrape log files for our edge cases where
we could not send them via syslog.

Fortunately, Splunk made agent installation and configuration relatively easy. We
manually managed the agents, and they proved to be very well behaved. One of the
side effects that we saw from the installation of our initial agents was a dramatic
increase in our volume of log data. We were processing approximately 10 GB of
syslogs per day from 3,500 network devices and 400 servers. With the addition
of three agents, we added an additional 8 GB of data indexed per day. While the
data gained from forwarders was excellent, it is an important consideration when

	 ;login:  APRIL 2011   Centralized Logging in a Decentralized World    21

attempting to estimate growth and planning for future license requirements. Since
these results were unexpected, we had to increase our license from 20 GB to 50 GB.

Now that our new centralized logging model had become well rooted, we collapsed
our syslog-NG servers together. At the same time, we also started to forward logs
using TCP rather than UDP. When making this change in syslog-NG, we found that
we were no longer able to spoof the sending address. Therefore we had to update
Splunk to look into the logs to obtain the proper hostname.

Field Extractions

Next, we set up additional field extractions. After running Splunk hands off for
over a year, we started investing time into reconfiguring it. We wanted to enhance
our ability to troubleshoot issues, create more meaningful alerts, and build better
reports. Custom field extractions allowed us to define portions of the logs, using
regular expressions, which became pivot points for searches and reporting. For
instance, let’s look at a standard Cisco syslog:

2011.01.20 11:51:32 switch123.harvard.edu local7 notice 65: Jan

20 11:51:31.540: %LINEPROTO-5-UPDOWN: Line protocol on Interface

GigabitEthernet1/0/14, changed state to up

To make sense out of the 500,000+ messages like this that we receive every day, we
created the following field extractions:

Host:					 switch123.harvard.edu

Facility:				 local7

Priority:				 notice

Message_type:	 %LINEPROTO-5-UPDOWN:

Message:	Line protocol on Interface GigabitEthernet1/0/14, changed state to

up

We can now determine which is the chattiest message type over the past 24 hours
with a single click after the search. Visualizing trends in log volume for a specific
event has proven to be very useful. For instance, seeing a large spike in failed SSH
attempts against a single host is something you might want to set up an alert for.

Phase 3—Indexes and Agents

Indexes

As our Splunk infrastructure expanded to 50 GB per day, we outgrew our single-
index solution. We were simply putting too many logs into a single index, which
made our searches take longer. While you could search different indexes with any
revision of the software, the indexes needed to be explicitly declared at search
time. We thought that this was too much overhead for our users. However, the next
version released allowed a user to automatically search any index that they had
permissions for.

With this new update, we migrated our source-based separation of logs to an
index-based separation. Since indexes store data in different folders on disk, we
gained security with data separation, as well as speeding up our searches by reduc-
ing the number of logs searched.

	22    ;login:  VOL. 36, NO. 2

Agents

After proving that Splunk agents were stable and reliable, we placed one on our
syslog-NG servers to scrape all of the syslogs that they collected. Instead of for-
warding the logs via TCP, we directed the logs to a file, which gets zeroed out once
a day. With a simple configuration to the Splunk agent, we were then sending logs
to various indexes. This change also came with a few extra benefits.

If there are any communications issues between the Splunk agent and the indexing
servers, the data is held until communications resume. This means that we could
now restart our Splunk indexing servers without having to worry about the loss
of data while the application was not available. These same logs would have fallen
into the bit bucket using any other forwarding strategy.

Agents can also be configured to deliver data that they obtain to the indexers over
SSL. As we tuned our implementation, we wanted to encrypt all data as close to the
source as possible. Since there are devices that you will never be able to accomplish
this on (e.g., network devices), the agent on the syslog-NG server gave us the best
results.

Splunk Applications and Agents

Free Splunk applications also came with this software upgrade. These applications
are really a series of predefined Splunk searches, charts, and dashboards. When
testing them out, we found the UNIX and Windows applications to be extremely
useful. They allow you to see details of disks, network interfaces, process tables,
etc., at a glance. However, to obtain this information, the agent is required to col-
lect it via “scripted inputs.” Scripted inputs log the data that is returned after run-
ning a specified command or script, such as “df –h”, “netstat”, “ps –ef”, etc.

As you can imagine, having the historical output from these commands, running
every $x seconds, has been an enormous benefit in troubleshooting performance-
related issues. Every aspect of a Splunk agent is configurable, including the
intervals at which the data is collected and which commands are run. We have a
few agents collecting data from Expect scripts run against network devices, which
allow us to gather data that SNMP cannot provide.

After using the UNIX and Windows apps to resolve a few problems, we realized
that we needed agents on every box to gain this level of visibility on our servers.
Although Splunk has a deployment application to manage Splunk agents, it is
really a Splunk agent configuration tool. It does not upgrade versions of the Splunk
agents or ensure that they are installed on any new servers. To address this issue,
we used a combination of Puppet and subversion. Puppet ensures that the agent is
installed, running, and configured. In addition, Puppet checks out custom Splunk
applications directly from version control in order to manage Splunk indexers and
search heads. This combination of tools not only mitigates risk but also allows us
to approach Splunk application development in a modular fashion.

Phase 4—Building Custom Applications

Now that a few team members had deep knowledge of the application and search
language, they had become the point persons for all issues that required “power
searching.” This represented most of the problems that were incurred on a daily
basis. To ensure that anyone could perform more simplified guided searches, we
began building small applications. Not only did this free up more resources, but
more people became comfortable using the application to solve problems.

	 ;login:  APRIL 2011   Centralized Logging in a Decentralized World    23

Some of the basic applications include:

♦	 Form search for email transactions
♦	 Dashboards to show which machines currently live on a particular Xen server
♦	 Saturation graphs for particular VLANs

After attending a Splunk developers training, we committed to building many more
applications in-house. We have a few applications in development that we are very
excited about. We are currently developing a “manager of managers” application to
serve as the integration point for all data from various monitoring tools, to perform
custom correlations, and to act as an event notification system for all alerts.

Architectural Options

Our original architecture was very simple and met our needs for the 20 GB of data
that we planned to process per day. However, organic growth and organizational
changes increased our potential daily log indexing towards 200 GB per day. With a
log volume of this size, we needed to reevaluate our architectural options.

The new architecture design (see Figure 1) includes four stand-alone indexers
and separate search heads per side of a mirrored implementation. The stand-alone
indexer pool will receive data, which is automatically distributed across all of the
indexers. Splunk then uses MapReduce technology to expedite the searches across
the indexes. Use of various search heads allows us to expand our customer base to
include groups that use different types of authentication, to reduce the overhead on
a single server for scheduling searches, and to develop applications for any Splunk
administrative group. For example, our Security team can now provision their
own users and develop their own applications, which searches a common dataset
in the indexing pool. This modular architecture has allowed us to collaborate with
several groups at the University.

This model can be leveraged for horizontal growth, which allows us to scale expo-
nentially. When we see that we are going to need to expand the amount of data that
we index, we simply add more indexing servers to the pool of indexers. We can also
add more search heads as our customer base grows and we find that scheduled
searches are starting to overwhelm the existing servers.

Figure 1: Splunk/Syslog architecture

Splunk / Syslog Architecture

Various
applications

Pages Emails

30

Key

Dotted = Filtered Data

Red = Encrypted TCP

Blue = UDP port 514

Solid = Unfiltered Data

Double = Distributed Comm.

Pri Net Sec Net Pri Net Sec Net Pri Net Sec Net

Splunk Indexers

Syslog-NG

Splunk Search Heads

Customer Searches

Primary Net Secondary Net

All servers and network gear

	24    ;login:  VOL. 36, NO. 2

Figure 1 is a diagram of the architecture that we are currently building out. Our
strategies from the bottom up are to:

♦	 Send all data encrypted from the source where possible
♦	 Leverage distributed indexing cloud, using MapReduce technology
♦	 Isolate customer environments from each other to:
	 ♦	 - Increase security (data and user separation / isolation)
	 ♦	 - Allow for multiple types of authentication interfaces
	 ♦	 - Allow independent application development
	 ♦	 - Increase search performance
♦	 Duplicate vertical environments to ensure the highest degree of availability

Conclusion

We first set out to solve some very simple problems with Splunk. As we learned
more about the application and it evolved, we have become much more dependent
on it. Splunk has since taken a unique place in our environment. It has become a
stable and flexible platform that provides solutions for an extremely broad range
of problems. In many places, it has become the glue that fills in the gaps missed by
other monitoring applications.

Not only is it a great tool to obtain, parse, and search data with, it is fantastic at
providing data visualization, custom applications, and integration with other tools.
While it has been referred to as “grep for your logs,” it also acts like “awk for your
logs,” allowing you to pivot reports and searches on any custom field. Splunk also
provides a powerful search language to perform analysis with commands, which
are very similar to common UNIX tools. Splunk also follows the UNIX model of
pipelines, allowing you to pass search or command results into other series of
searches, internal commands, external scripts, or other tools.

The open and modular design has allowed us to use Splunk as an engine to power
custom tools such as a Puppet dashboard, a MAC address tracker, security tools for
forensics and compliance, and a trending tool for network, systems, and applica-
tions. While it is an extremely simple tool to start using on day one, it is also an
application with great depth. We feel that these are the things that really make
Splunk uniquely useful and that drive its continuing growth within our organization.

