
26 ; LO G I N : vO L . 35, N O. 1

J o C h e n l . l e i d n e R a n d
g a R y B e R o S i k

building and installing a
Hadoop/MapReduce
cluster from commodity
components: a case study

Jochen L. Leidner, Ph.D., is a research scientist
in the corporate Research and Development
group at Thomson Reuters and a director at
Linguit Ltd. He holds a doctorate degree in
Informatics from the University of Edin-
burgh, where he has been a Royal Society
Enterprise Fellow in Electronic Markets and a
postdoctoral researcher, and he has master’s
degrees in Computational Linguistics, Eng-
lish Language and Literature, and Computer
Speech, Text and Internet Technology. His
research interests include natural language
processing, search engines, statistical data
mining, and software engineering. Jochen is
a member of ACM, ACL, and SIGIR and has co-
authored over 20 peer-reviewed papers and
several patent applications.

leidner@acm.org

Gary Berosik is a lead software engineer at
Thomson Reuters Research and Develop-
ment and an adjunct faculty member in
the Graduate Programs in Software at the
University of St. Thomas in St. Paul, MN.
His interests include software engineering,
parallel/grid/cloud processing, statistical
machine learning algorithms, learning-sup-
port technologies, agent-based architectures,
and technologies supporting business intel-
ligence and information analytics.

gary.berosik@thomsonreuters.com

W e d e S c r I b e a S t r a I g h t f o r W a r d
way to build, install, and operate a compute
cluster from commodity hardware. A com-
pute cluster is a utility that allows you to
perform larger-scale computations than are
possible with individual PCs. We use com-
modity components to keep the price down
and to ensure easy availability of initial
setup and replacement parts, and we use
Apache Hadoop as middleware for distrib-
uted data storage and parallel computing.

Background

At the time of writing, single desktop computers
and even mobile devices have become faster than
the supercomputers of the past. At the same time,
storage capacities of disk drives have been increas-
ing by multiple orders of magnitude. As a result of
mass production, prices have decreased and the
number of users of such commodity machines has
increased. Meanwhile, pervasive networking has
become available and has led to the distribution
and sharing of data and, consequently, distributed
communication, creation, consumption, and col-
laboration. Perhaps paradoxically, the ever-increas-
ing amount of digital content that is the result of
more powerful machine storage and networking is
intensifying the demand for information and for
making sense of activities, preferences, and trends.
The analysis of large networks such as the World
Wide Web is such a daunting task that it can only
be carried out on a network of machines.

In the 1990s, Larry Page, Sergey Brin, and oth-
ers at Stanford University used a large number of
commodity machines in a research project that
attempted to crawl a copy of the entire Web and
analyze its content and hyperlink graph structure.
The Web quickly grew, becoming too large for
human-edited directories (e.g., Yahoo) to efficiently
and effectively point people at the information
they were looking for. In response, Digital Equip-
ment Corporation (DEC) proposed the creation of a
keyword index of all Web pages, motivated by their
desire to show the power of their 64-bit Alpha pro-
cessor. This effort became known as the AltaVista
search engine. Later, the aforementioned Stanford
group developed a more sophisticated search en-
gine named BackRub, later renamed Google.

Today, Google is a search and advertising com-
pany, but is able to deliver its innovative services
only due to massive investments in the large-scale

; LO G I N : Fe b rua ry 201 0 b u I Ld I N G a h a d O O P/ m a Pre du Ce CLuSTe r FrOm COm mO d IT y COm P O N e NT S 27

distributed storage and processing capability developed in-house. This ca-
pability is provided by a large number of PCs, the Google File System (GFS),
a redundant cluster file system, and MapReduce, parallel data processing
middleware. More recently, the Apache Hadoop project has developed a
reimplementation of parts of GFS and MapReduce, and many groups have
subsequently embraced this technology, permitting them to do things that
they could not do on single machines.

Mapreduce/Hadoop Concepts

The key innovation of Hadoop [3], modeled after Google’s MapReduce [11],
is to eliminate synchronization problems by imposing a programming model
that makes it possible to automatically address synchronization issues under
the hood. This distributed programming model was inspired by functional
languages like LISP and SML. In functional programming, new data is cre-
ated from old data without modifying state, and this model is more suitable
for parallelization, as synchronization issues are less often an issue. Each
MapReduce task comprises two phases: (a) a Map step iterates over a set of
data elements (called splits or slices), creating a key-value pair representa-
tion, and, optionally, carrying out other computations on each element; and
(b) a Reduce step that transforms the set of data elements produced by the
Map step into a single data element.

A naive example would be to compute the sum of squares of a time series.
A vector of input numbers, [3, 1, 2, 19, 3] could each be squared indepen-
dently from one another by a Map task, resulting in the intermediate tuple
vector [(1, 9), (1, 1), (1, 4), (1, 361), (1, 9)]. The keys are artificially the same
for all tuples to ensure that each tuple gets processed by the same Reducer,
as there is an implicit sort step, not shown in Figure 1, that happens after
all Mappers have completed but before the Reducer starts. Then the Reduce
step could carry out the summation, aggregating the data vector to the single
scalar 384. Jobs submitted by the user to the Hadoop/MapReduce system
get broken down to a set of tasks (i.e., there may be many parallel Mappers
working on slices of the data: see Figure 1). The key innovation of HDFS,
a redundant distributed file system modeled after Google’s GFS [10], is to
optimize storage and streaming access to large files on commodity hardware.
This is achieved by means of n-time replication (e.g., n=3 means every file
is held on three machines at any one time, and if one of them dies, another
copy will be created to make up for the loss). HDFS blocks on disk are large
(typically 64 MB). The command-line program hadoop can take UNIX-style
commands as arguments to list, copy, remove, etc., files as well as to upload
from the local file system to HDFS and back.

F i g u r e 1 : m a P r e d u C e P r O C e s s i n g m O d e L

28 ; LO G I N : vO L . 35, N O. 1

Procurement

We describe how to build such a cluster next. We choose the GNU/Linux
operating system because it is very efficient, scalable, stable, secure, is avail-
able in source code without licensing impediments, and has a large user
base, which ensures rapid responses to support questions. We select the
Ubuntu distribution of the operating system because it has good support
and a convenient package management system and is offered in a server
edition that contains only server essentials (Ubuntu Server). At the time of
writing, release 9.07 was current. Little, if anything, of the described ap-
proach depends on this particular version. You will need $5,000–$8,000 for
a 10-node installation and two person-days of your time. You will also need
the following components:

Master■■ : We need a desktop PC running Linux as a master machine. In
most cases, no master purchase will be necessary, because an existing high-
end PC will be available. In one installation, we picked a Dell Optiplex
(2x1 TB HDD configured as RAID, 24” TFT display), which was already
available. Cost: $0 (if you don’t have a main machine yet, I’d suggest order-
ing a Mac Pro or a Dell for $3,000).
Switch■■ : Using a professional-grade Gigabit switch (e.g., the auto-configur-
ing Netgear ProSafe 24) means we can save valuable time for setup; it has
24 ports, giving us room for expansion. Gigabit Ethernet is important (and
now affordable), as there is going to be a lot of traffic between nodes.
Network cabling■■ : Get one CAT6 patch cable per node to connect it with
the switch. Cost is $18 + $3n, where n = number of nodes; when ordering
in bulk, plan on $40 for a 10-node cluster.
Nodes■■ : We should plan for at least three slave-node PCs in order to have
an advantage over a single, powerful desktop PC or server and to deploy
the various core Hadoop processes. Since we are drawing from commodity
components, we should pick an attractive package deal rather than waste
time on customizing a node. Criteria are price, CPU speed, number of
cores, RAM, number of hard disk slots, energy consumption, cooling, and
noise. The hard disk drive size is not a criterion, because they are going
to be replaced (cheap commodity PC deals include only very small disk
drives). The amount of RAM is important, but since it can be cheaply re-
placed what matters more is the potential rather than the existing memory
size: 2 GB should be considered the absolute minimum, 4 GB/node RAM is
recommended (16 GB would be ideal, but at the time of writing is unlikely
to be found in consumer machines). For the cluster shown in Figure 2,
Acer X2 nodes with a dual-core Athlon X2 64-bit CPU (1.2 GHz), 3 GB
RAM, 320 GB HDD were selected because they offer 4,800 bogo-MIPS/core
for around $400. Cost is $400n; plan on $4,000 for 10 nodes.
Hard disk drives■■ (1 TB or higher): Determine the type of hard disk drive
with the lowest $/TB cost. High-capacity drives (at the time of writing, 2
TB) are overly expensive, and the average size of drives used in commodity
PCs as you buy them is too small, so the drives they come with (e.g., 320
GB) have to be replaced. Cost is $100n: plan on $1,000 for 10 nodes.
Enclosure■■ (shelf or rack): The nodes, switch, etc., need to live somewhere.
A 42U 19" rack is the standard for data centers, however it may prove an
unreasonable choice for several reasons: first, the cost of a new rack could
easily exceed the total of the hardware expenses for the cluster itself, and,
second, since the nodes are commodity machines as opposed to “profes-
sional” 19" servers, they may be hard to fix, so the main advantage of the
19" rack may be lost on them.
Alternatives are cheap IKEA shelves made from wood or metal or anything
similar. Finding a solution with wheels to keep the cluster mobile avoids

; LO G I N : Fe b rua ry 201 0 b u I Ld I N G a h a d O O P/ m a Pre du Ce CLuSTe r FrOm COm mO d IT y COm P O N e NT S 29

having to disassemble it, should the need for relocating it arise. Cost: ap-
proximately $400 (but if you are a system administrator, it is highly likely
that you already have a spare rack or shelf somewhere).
Socket multiplier■■ : Use a fused socket multiplier to cope with the plugs of
all nodes and the master. Cost: $20.

F i g u r e 2 . h y d r a , a m i n i a T u r e C L u s T e r w i T h O n e m a s T e r P C a n d
T h r e e n O d e s , i s T h e F i r s T a u T h O r ’ s P r i V a T e C L u s T e r F O r h O m e
O F F i C e u s e . T h i s i s O n e O F a s e r i e s O F i n s T a L L a T i O n s O F V a r y -
i n g s i z e s w e h a V e b e e n w O r k i n g O n .

Physical Setup and Assembly

It is important to pick a suitable location for the cluster up front. Power con-
sumption for a cluster of reasonable size will be considerable. For instance,
10 nodes of Acer X1700 at 220 watts each amount to 2200/120 = 18.4
amperes, which is just under the limit of what the circuit breaker of a typi-
cal household or small office will be able to carry. In addition, consider the
significant heat generation that a large cluster can create.

Upgrade RAM and insert HDD drives. If you use a closed rack that comes
with a door (recommended to keep the noise level down, but even more
expensive than its open siblings), you may consider removing all cases of the
node PCs altogether to improve ventilation (this “naked” configuration was
pioneered by Google).

Operating System Installation

Download Ubuntu Server 9.07 or higher and burn a medium; connect all
nodes with the switch using the CAT6 cables; connect all nodes with the
power source. Connect the master PC’s screen to the first node to be in-
stalled, insert the Ubuntu CD to boot, and install Ubuntu Server. Set up the
HDD partitions as follows:

boot■■ (1 GB) not mounted, ext3, bootable, primary (important: this one
should be at the beginning of the disk, or you may run into BIOS boot
problems, e.g., “grub error 2”)
root■■ (50 GB) mounted as /, ext3, logical

30 ; LO G I N : vO L . 35, N O. 1

main■■ (0.94 TB) mounted as /var (var is a standard convention indicating
variable data, i.e., a high amount of input/output is to be expected), ext3,
logical
swap■■ (2 GB) not mounted, type swap, logical using manual partitioning
(last option)
Don’t use logical volume management (LVM) or encryption.■■

Set the time zone to UTC/GMT and install software packages:

Ubuntu server (always included, no action required)■■

LAMP■■

OpenSSH■■

You will also have to give the computer a name (e.g., the cluster in Figure 2
is called Hydra, so its nodes are called hydra1, hydra2, . . .). After the instal-
lation you should be able to re-boot and to issue:

sudo apt-get update
sudo apt-get dist-upgrade
sudo apt-get install sun-java6-jdk xorg gdm xfce4 xemacs21

Since our example cluster is experimental, we wanted to be able to run X11
on the nodes; every package from xorg onwards is not necessary for a pro-
duction cluster. Depending on the tasks that we anticipate using the clus-
ter for, we may want to consider installing additional packages. One of us
does a lot of Web research, data crawling, analytics, and statistical machine
learning, so it makes sense to get some crawlers, the R statistics system, and
libraries for numeric computing:

sudo apt-get install wget curl lynx r-base r-base-dev python-numpy python-scipy

At this point, our first node is operational as far as the operating system
is concerned, but in order to make combined used of its nodes as a single
quasi-utility we still need to install Apache Hadoop and then replicate the
setup to the other nodes.

Example Hadoop Installation on a Small Cluster

After the installation of the operating system, we can now turn to the setup
of Apache Hadoop as our middleware for redundant storage and parallel
processing. When we are done, we should have three processes running on
our three nodes, as follows:

hydra1 Acer X1700 Master NameNode;DataNode;JobTracker
hydra2 Acer X1700 Slave SecondaryNameNode;DataNode;TaskTracker
hydra3 Acer X1700 Slave DataNode;TaskTracker

Note that the use of the word Master here pertains to Hadoop and is distinct
from the cluster master PC (which has the keyboard and screen attached).

1. Ensure that Java is set up. The latest Hadoop releases depend on Java 6.x
or later. Download/install/test the latest 6.x Java release if this is not already
set up.

It is recommended to follow the procedures for single node cluster setup as
described in the online article by Michael G. Noll on running Hadoop in
Ubuntu Linux environments [1].

We suggest you do this on each machine of a multi-node cluster to help
verify the operational status of Hadoop on each node before continuing to
set up a multi-node configuration. The steps below show examples of follow-
ing these instructions.

; LO G I N : Fe b rua ry 201 0 b u I Ld I N G a h a d O O P/ m a Pre du Ce CLuSTe r FrOm COm mO d IT y COm P O N e NT S 31

2. Change to user hadoop. Add a hadoop group and hadoop user for that
group.

<your-user-name>@hydra1:~$ sudo addgroup hadoop
<your-user-name>@hydra1:~$ sudo adduser --ingroup hadoop hadoop

3. Add the following exports for proxy and JAVA_HOME to the .bashrc file
for both your user and the new hadoop user:

export http_proxy=<yourProxy>:<proxyPort>
export JAVA_HOME=<yourJavaHomePath>

4. Configure and test SSH operation on all nodes (required by Hadoop).

As the hadoop user, on the master node, create the RSA key:

hadoop@hydra1:~$ ssh-keygen -t rsa -P “”

Copy or append the new key to the authorized_keys file in the .ssh direc-
tory:

hadoop@hydra1:~$ cat /home/hadoop/.ssh/id_rsa.pub >> ~hadoop/.ssh/
authorized_keys

Try to connect to the local machine with the hadoop user. Respond with a
yes when prompted to “continue connecting.”

hadoop@hydra1:~$ ssh localhost

5. Download Hadoop 0.19.2

As of this writing, there are known instability issues with the 0.20 release,
so release 0.19.2 is used for this installation. For example, download from:

http://newverhost.com/pub/hadoop/core/hadoop-0.19.2/hadoop-0.19.2.tar.gz

(Note: there are also API differences between 0.19 and 0.20+.) Now, with ad-
ministrator permissions, install this release in the desired directory location.
The example installation steps below assume the original download was to
the directory location: /home/<your-user-name>/Desktop. Note that these
steps must be performed as root.

Uncompress the Hadoop release to the desired location:

root@hydra1:/usr/local# tar xzf /home/<your-user-name>/Desktop/
hadoop-0.19.2.tar.gz

Rename the release as desired, and change ownership of all the release con-
tents to permit use by the hadoop user:

root@hydra1:/usr/local# mkdir /var/hadoop
root@hydra1:/usr/local# ln –s /var/hadoop hadoop
root@hydra1:/usr/local# mv hadoop-0.19.2/* hadoop/*
root@hydra1:/usr/local# chown -R hadoop:hadoop hadoop

6. Add an export for HADOOP_HOME to the .bashrc file for both your user
and the hadoop user:

export HADOOP_HOME=<yourHadoopHomePath>

7. Edit the file /usr/local/hadoop/conf/hadoop-env.sh by uncommenting the
export for JAVA_HOME and setting it to the correct value:

export JAVA_HOME=<yourJavaHomePath>

8. Edit the file /usr/local/hadoop/conf/hadoop-site.xml to contain single
node test configuration settings. Adjust values to suit your own configura-
tion needs. There are many possible default configuration parameter settings

32 ; LO G I N : vO L . 35, N O. 1

that can be adjusted. See the /usr/local/hadoop/conf/hadoop-defaults.xml
file for more information about the complete set of adjustable parameters.

<configuration>

<property>
 <name>hadoop.tmp.dir</name>
 <value>/usr/local/hadoop/tmp/datastore/hadoop-${user.name}</value>
 <description>
 A base location for other temp datastore directories.
 </description>
</property>

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:54310</value>
 <description>
 The name of the default file system.
 A URI whose scheme and authority determine the filesystem implementation.
 The URI’s scheme determines the config property (fs.SCHEME.impl) naming
 the filesystem implementation class. The URI’s authority is used to
 determine the host, port, etc. for a file system.
 </description>
</property>

<property>
 <name>mapred.job.tracker</name>
 <value>localhost:54311</value>
 <description>
 The host and port that the MapReduce job tracker runs at.
 If “local,” then jobs are run in-process as a single map and reduce task.
 </description>
</property>

<property>
 <name>dfs.replication</name>
 <value>1</value>
 <description>
 Default block replication.
 The actual number of replications can be specified when the file is created.
 The default is used if replication is not specified at create time.
 </description>
</property>

</configuration>

Note that dfs.replication specifies the number of copies of each file that is
kept on the cluster by HDFS’s redundancy mechanism. For a single “pseudo-
cluster” setup, we set this to 1 until that node is operational, then we must
change it (e.g., back to its default of 3).

9. With administrator privileges, create the hadoop tmp/datastore directory
for your user and the hadoop user and change ownership to allow use by the
hadoop and your user:

root@hydra1:/usr/local/hadoop# mkdir –p tmp/datastore/hadoop-hadoop
root@hydra1:/usr/local/hadoop# chown -R hadoop:hadoop tmp/datastore/

hadoop-hadoop
root@hydra1:/usr/local/hadoop# mkdir tmp/datastore/hadoop-<your-user-name>
root@hydra1:/usr/local/hadoop# chown -R <your-user-name>:<your-user-

name> tmp/datastore/hadoop-<your-user-name>

; LO G I N : Fe b rua ry 201 0 b u I Ld I N G a h a d O O P/ m a Pre du Ce CLuSTe r FrOm COm mO d IT y COm P O N e NT S 33

10. Test Hadoop execution in single-node mode, using HDFS.

As the hadoop user, format the NameNode:

hadoop@hydra1:~$ $HADOOP_HOME/bin/hadoop namenode -format

Start the (single-node) cluster:

hadoop@hydra1:~$ $HADOOP_HOME/bin/start-all.sh

Verify that the expected Hadoop processes are running using Java’s jps:

hadoop@hydra1:~$ jps
27069 JobTracker 26641 NameNode
26729 DataNode 29425 Jps
26923 SecondaryNameNode 27259 TaskTracker

With administrator permission, use netstat to verify that Hadoop is listening
on the expected/configured ports. For example:

root@hydra1:~# netstat -plten | grep java | grep 127.0.0.1
tcp6 0 0 127.0.0.1:54310 :::* LISTEN 1001 590635 26641/java
tcp6 0 0 127.0.0.1:54311 :::* LISTEN 1001 594563 27069/java
tcp6 0 0 127.0.0.1:51633 :::* LISTEN 1001 601104 27259/java

11. Set up and run a Hadoop example test application to verify operability.

Adjust the <HadoopHome>/conf/hadoop-env.sh file to set JAVA_HOME,
HADOOP_HOME, and a reasonable CLASSPATH (if desired) for Hadoop
executions:

== file “hadoop-env.sh” ==
export JAVA_HOME=/usr/lib/jvm/java-6-sun/jre
export HADOOP_HOME=/usr/local/hadoop
export CLASSPATH=$HADOOP_HOME/hadoop-0.19.2-core.jar:$HADOOP_

HOME/hadoop-0.19.2-examples.jar:$HADOOP_HOME/hadoop-0.19.2-test.
jar:$HADOOP_HOME/hadoop-0.19.2-tools.jar:$CLASSPATH:$classpath

Run the test example program. The following example executes the pi pro-
gram included in the distributed Hadoop examples. Use the source com-
mand to ensure that the settings are kept by the executing shell process.

hadoop@hydra1:~$ source hadoop-env.sh
hadoop@hydra1:~$ $HADOOP_HOME/bin/hadoop jar $HADOOP

_HOME/hadoop-0.19.2-examples.jar pi 2 10

The output should look similar to the following:

Number of Maps = 2 Samples per Map = 10
Wrote input for Map #0
Wrote input for Map #1
Starting Job
09/10/22 13:17:50 INFO mapred.FileInputFormat: Total input paths to process : 2
09/10/22 13:17:50 INFO mapred.JobClient: Running job:

job_200910221225_0001
09/10/22 13:17:51 INFO mapred.JobClient: map 0% reduce 0%
09/10/22 13:18:00 INFO mapred.JobClient: map 50% reduce 0%
09/10/22 13:18:03 INFO mapred.JobClient: map 100% reduce 0%
09/10/22 13:18:10 INFO mapred.JobClient: map 100% reduce 100%
09/10/22 13:18:11 INFO mapred.JobClient: Job complete:

job_200910221225_0001
09/10/22 13:18:11 INFO mapred.JobClient: Counters: 16
09/10/22 13:18:11 INFO mapred.JobClient: File Systems
09/10/22 13:18:11 INFO mapred.JobClient: HDFS bytes read=236

34 ; LO G I N : vO L . 35, N O. 1

09/10/22 13:18:11 INFO mapred.JobClient: HDFS bytes written=212
09/10/22 13:18:11 INFO mapred.JobClient: Local bytes read=78
09/10/22 13:18:11 INFO mapred.JobClient: Local bytes written=218
09/10/22 13:18:11 INFO mapred.JobClient: Job Counters
09/10/22 13:18:11 INFO mapred.JobClient: Launched reduce tasks=1
09/10/22 13:18:11 INFO mapred.JobClient: Launched map tasks=2
09/10/22 13:18:11 INFO mapred.JobClient: Data-local map tasks=2
09/10/22 13:18:11 INFO mapred.JobClient Map-Reduce Framework
09/10/22 13:18:11 INFO mapred.JobClient: Reduce input groups=2
09/10/22 13:18:11 INFO mapred.JobClient: Combine output records=0
09/10/22 13:18:11 INFO mapred.JobClient: Map input records=2
09/10/22 13:18:11 INFO mapred.JobClient: Reduce output records=0
09/10/22 13:18:11 INFO mapred.JobClient: Map output bytes=64
09/10/22 13:18:11 INFO mapred.JobClient: Map input bytes=48
09/10/22 13:18:11 INFO mapred.JobClient: Combine input records=0
09/10/22 13:18:11 INFO mapred.JobClient: Map output records=4
09/10/22 13:18:11 INFO mapred.JobClient: Reduce input records=4
Job Finished in 21.342 seconds
Estimated value of PI is 3.2

Congratulations! At this point you have a simple, single-node Hadoop envi-
ronment up and running!

12. Shut down the Hadoop processes in the single-node cluster:

hadoop@hydra1:~$ $HADOOP_HOME/bin/stop-all.sh

The output should look similar to the following:

stopping jobtracker
localhost: stopping tasktracker
stopping namenode
localhost: stopping datanode
localhost: stopping secondarynamenode

To configure the Hadoop middleware to handle a multi-node cluster, we
recommend you follow the procedures for setting up multi-node clusters
described in an online article by Michael G. Noll [2].

You now face the issue of having to install the whole node’s environment
(Linux, packages, Hadoop) from one node to the remaining nodes in a near-
identical way. For smaller clusters this can be done manually. For larger
clusters with nodes that possibly have different hardware specifications,
stronger tools need to be used to define machine classes, separate configura-
tions for each class, and assist in the distribution of these configurations to
the appropriate node machines. In these settings, various sources suggest
the use of configuration management tools like Puppet [4], Cfengine [5], or
Bcfg2 [6]. More concretely, there are several solutions to this, depending on
your experience and number of nodes:

Burn an ISO image with your setup and use this with the remaining nodes.1.

Insert the empty hard disk drives as secondary drives in the master PC 2.
temporarily in order to copy over the entire disk using the dd(1) command.

Clone the disk over a network connection using 3. dd(1) and netcat (nc(1)) as
outlined by [7].

Install the other nodes manually (estimated time: about 30 min/node).4.

Method 3 is superior for large clusters, but method 4 is fast enough for
smaller clusters. Remember that the hostname must be unique, so you may

; LO G I N : Fe b rua ry 201 0 b u I Ld I N G a h a d O O P/ m a Pre du Ce CLuSTe r FrOm COm mO d IT y COm P O N e NT S 35

have to set it manually after cloning the node setups by manually invoking
the hostname(1) command for each node.

In order to automate the installation completely, [9] recommends using static
IP addresses for the nodes, setting the hostname by keeping a file host-
names.new that contains the node names and their static IP addresses, and
then generating a set of node-specific kick-start files from a master template
(here called “anaconda-ks.cfg,” with NODE_HOSTNAME and NODE_
STATIC_IP being placeholders) as follows:

for i in $(cat ~/hostnames.new) ; do \
 cat anaconda-ks.cfg | sed s/NODE_HOSTNAME/$i/g | sed s/NODE_STATIC_

IP/$(grep $i /etc/hosts | awk ‘{print $1}’)/g > ks-$i.cfg ; \
done

In this approach, the operating system is booted over the network using the
node-specific kick-start file.

There is yet another mode of operation to install Hadoop on more than one
node very conveniently: Cloudera Inc., a cluster/cloud computing startup,
which recently hired Hadoop architect Doug Cutting, permits you to enter
your desired cluster configuration on a Web interface (my.cloudera.com),
which automatically creates customized installers (e.g., *.rpm packages) that
contain all the cluster configuration information.

Operating the Cluster

Now that your Hadoop cluster is fully operational, we recommend you try
out the word count example from the Apache Hadoop tutorial [8], which
shows you how the UNIX wc(1) command can be distributed across a cluster.

In general, to use Hadoop, you can choose several modes of operation:

1. Use its native Java API. To do this, you will have to write mapper and
reducer classes that extend org.apache.hadoop.mapred.MapReduceBase
and implement Mapper<S> and Reducer<T>, respectively (S and T are type
signatures).

2. Use Hadoop Streaming. If you already have a set of command-line tools
such as taggers, parsers, or classifiers that you would like to utilize, you can
invoke them as mappers and reducers, or you can write mappers and reduc-
ers in Python, Perl, etc. This is an excellent way to prototype a new system
pipeline, but anecdotal evidence suggests the startup cost of scripting lan-
guage interpreters/compilers may be prohibitive for production use (recoding
a Python/Perl program in C++ for use in Streaming or using the native Java
API may be faster by a large factor).

3. Use Hadoop’s C++ interface. There is a C++ wrapper library, Hadoop
Pipes, which uses socket communication to talk to the Hadoop daemon
processes directly (avoiding JNI).

Besides the MapReduce parallel processing functionality and the HDFS
distributed redundant file system, there are some other useful sub-projects
in Apache Hadoop: Avro is a system for serialization of data. It is schema-
based and uses a fast, compact binary format. Chukwa is a sub-system
for managing and monitoring the collection and updating of distributed
log files. HBase is a free open-source database for Hadoop modeled after
Google’s Bigtable. Facebook’s contribution is Hive, which comprises a toolkit
and library for processing text and logfiles and which contains an interactive
environment, a query compiler and evaluation engine for HQL, an SQL-
like query language, compiler, driver, and execution engine, as well as a

36 ; LO G I N : vO L . 35, N O. 1

metastore called SerDe (short for Serialization and Deserialization). Pig is a
versatile scripting language contributed by Yahoo that permits easy iteration
over data records/tuples, sorting, joins, and counting, besides user-defined
functions. Users with exposure to SQL will quickly pick up Pig idioms, and
a nice property of the interpreter, which is implemented in Java, is that it
can execute scripts both inside and outside the Hadoop/HDFS infrastruc-
ture. ZooKeeper is a centralized service for a couple of things that make dis-
tributed computing challenging, namely, maintaining configuration informa-
tion, naming services, providing distributed synchronization, and providing
a notion of groups. For example, the distributed synchronization primitives
offered permit the implementation of a distributed queue. The Pig distribu-
tion contains some tutorial examples on mining Web search engine queries
that we highly recommend; running these will give you an idea of the power
of the MapReduce paradigm and its free Hadoop implementation.

Next, you can think of applications in your own areas of interest and
express them in terms of mappers and reducers to execute them on your
cluster. We are particularly interested in machine learning, information
retrieval (indexing, retrieval, clustering), graph analysis of social networks,
and data mining from log files. Check out trendingtopics.org for an example
data mining application in the area of automatic trend analysis, which was
built with Hadoop. Whether you want to sort petabytes of customer records
in “record” time (a Hadoop cluster currently holds the record for a sorting
benchmark) or crunch logfiles to find hidden statistical relationships in your
data, Hadoop is your friend (and you are not alone, as Yahoo, Facebook,
Twitter, etc., are heavily relying on it as well). If you seek further inspiration,
we recommend the book Beautiful Data [13].

Summary and Conclusion

We have described a successfully completed project to build a cluster com-
puting utility from commodity parts. The cluster is affordable (<$5,000), can
be built incrementally, and is more powerful than servers that were priced
over a quarter million dollars just a few years ago. Hadoop provides power-
ful OS middleware for large-scale batch processing such as the automatic
analysis of large document collections. We expect that in the future, en-
terprise versions of commodity operating systems will incorporate some of
these capabilities, but we hope the above introduction can serve to give the
interested reader a head start (for more detailed, recipe-style instructions
targeting a non-system administrator audience, also consult [12]).

Happy Hadooping!

rEfErEnCES

[1] Michael G. Noll, “Running Hadoop on Ubuntu Linux (Single-Node
 Cluster)”: http://www.michael-noll.com/wiki/Running_Hadoop_On
_Ubuntu_Linux_(Single-Node_Cluster).

[2] Michael G. Noll, “Running Hadoop on Ubuntu Linux (Multi-Node
 Cluster)”: http://www.michael-noll.com/wiki/Running_Hadoop_On
_Ubuntu_Linux_(Multi-Node_Cluster).

[3] Tom White, Hadoop: The Definitive Guide (O’Reilly/Yahoo! Press, 2009).

[4] Puppet online information: http://reductivelabs.com/trac/puppet/
wiki/DocumentationStart.

; LO G I N : Fe b rua ry 201 0 b u I Ld I N G a h a d O O P/ m a Pre du Ce CLuSTe r FrOm COm mO d IT y COm P O N e NT S 37

[5] Cfengine online information: http://www.cfengine.org/manuals/
cf3-reference.html.

[6] Bcfg2 online information: http://trac.mcs.anl.gov/projects/bcfg2/wiki/
UsingBcfg2.

[7] Gite Vivek, “Copy hard disk or partition image to another system using
a network and netcat (nc)”: http://www.cyberciti.biz/tips/howto-copy
-compressed-drive-image-over-network.html.

[8] Apache Hadoop Map/Reduce Tutorial online information: http://
hadoop.apache.org/common/docs/current/mapred_tutorial.html.

[9] Installing CentOS on a cluster via NFS online information: http://
biowiki.org/InstallingCentOSOnClusterViaNFS.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google
File System,” Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP 2003), Bolton Landing, NY: 29-43.

[11] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Pro-
cessing on Large Clusters,” Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’04): 137–150.

[12] Jochen L. Leidner and Gary Berosik (2009), “Building and Installing a
Hadoop/MapReduce Cluster from Commodity Components Technical Re-
port”: http://arxiv.org/ftp/arxiv/papers/0911/0911.5438.pdf.

[13] Toby Segaran and Jeff Hammermacher, Beautiful Data: The Stories Behind
Elegant Data Solutions (O’Reilly, 2009).

Disclaimer. All opinions expressed in this article are the authors’ and do
not reflect any official opinion or endorsement by the Thomson Reuters
 Corporation.

