
R O B E R T H A S K I N S

ISPadmin
Robert Haskins has been a UNIX system administra-
tor since graduating from the University of Maine
with a B.A. in computer science. Robert is employed
by Renesys Corporation, a leader in real-time
Internet connectivity monitoring and reporting. He
is lead author of Slamming Spam: A Guide for System
Administrators.

rhaskins@usenix.0rg

T H I S A R T I C L E I S B A S E D O N T H E N E W
book Slamming Spam: A Guide for System
Administrators (ISBN 0-13-146716-6) by
Robert Haskins and Dale Nielsen. This
material is copyright 2005 Addison-Wesley
Professional, all rights reserved. It is reprint-
ed with permission of the publisher,
Addison-Wesley Professional. This material
is taken from Chapter 12 and is identical to
the Camram section in the book, except
that Figures 4 through 8 have been deleted
for space reasons.

Camram is a “sender verification” system, similar to
challenge/response systems TMDA and ASK. It has a
very nice Web-based interface to CRM114 in addition
to its native sender verification functionality. The idea
is any message that is not from a sender who com-
putes a certain algorithm (using a Hashcash) is
processed through CRM114. Any message that does-
n’t have the computation result in the headers must
be analyzed by CRM114.

While sender verification is controversial within the
anti-spam community, these types of systems are use-
ful to some people. Camram might be used in any
installation that desired a graphical, Web-based inter-
face to CRM114. It also could be used at a site where
additional protection beyond traditional header/con-
tent analysis (such as SpamAssassin or bogofilter)
was desired. If enough email originators use sender
compute headers, impact on recipient Camram email
infrastructure would be reduced, due to the fact that
those messages with sender compute headers bypass
the more resource-intensive CRM114 checks.

For more information on Camram, see http://www
.camram.org.

Camram

The reason for Camram’s original implementation
was as a reference implementation for a sender com-
pute system, namely Hashcash. Although this is still a
large part of the goal, Camram has tight integration
with the CRM114 spam classifier. It also contains a
graphical user interface to manage itself and the
CRM114 application as well. Camram is worth imple-
menting just for the ease of use it provides in manag-
ing CRM114.

Camram can be set up as an invisible proxy between
your existing MTA and email systems that want to
send your users email. This eliminates the need to

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 31

32 ; L O G I N : V O L . 3 0 , N O . 1

run Camram on your existing (perhaps overly loaded) email systems. Camram
refers to this setup as the interception method. You should be aware that Cam-
ram is still a work-in-progress. Some of the functionality doesn’t work precisely
as expected, but it should be suitable for most situations. Be sure to check the
Camram Web site often for code updates.

I N B O U N D M E S S AG E S

You can deploy Camram in two different ways in your inbound email infrastruc-
ture. The first way is by using procmail to redirect incoming messages, in a setup
where Camram is run on the same machine as the end user mailboxes. This is
the setup we cover here.

The second method that can be used is interception. This method “intercepts”
the SMTP port 25 connection and redirects it to the Camram server, which
processes the message and sends it to the mailbox. The interception method is
used in a situation where your organization’s email system is distributed into
machines that perform the email relay function and servers that house mail-
boxes. Another case is when your primary server is Exchange/Domino, where
you cannot run Camram directly on the mail server. Implementing an anti-spam
solution such as Camram on a separate system helps to distribute the load on
machines outside of your regular mail machines.

In either case, the actual processing of messages is the same, regardless of
whether the procmail or interception methods are used. Figure 1 shows the flow
of messages through the Camram system.

F I G U R E 1 .

Camram inbound message flow. (From http://www.camram.org; courtesy of Keith
Dawson, dawson@worlds.std.com; used with permission.)

O UTB O U N D M E S S AG E S

Messages leaving the Camram system must be stamped to show that they have
been processed through the Hashcash computational system (see Figure 2). This
is done as a proxy, using the EmailRelay software. The message is reinjected into
the MTA on port 30025.

F I G U R E 2 .

Camram outbound message flow.

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 33

Installation

Camram can be downloaded from http://www.camram.org/download.html. We
cover Camram version 0.3.25 here. The build script downloads all of the needed
components, including:

n TRE—Regular Expression matching library required by CRM114
n CRM114—The Controlled Regular Expression Mutilator covered in

Chapter 8, “Bayesian Filtering”
n Hashcash—Implements the sender compute algorithms required by Camram
n EmailRelay—MTA used by Camram to implement its message stamper

functionality
n normalizemime—Used by CRM114 to convert MIME-encoded text

These are external packages that Camram requires for operation. Camram will
download and install Python if it is not available on the system or if it is not at
the correct version level when you run the buildit.sh script (shown next). After
downloading, become root, extract the files, add the Camram group and user,
and run the build script like this (the downloaded installation is assumed to be
/usr/local/src/raging_dormouse-0.3.25.tar.gz):

bash$ sudo su
mkdir /usr/local/src/camram-0.3.25
cd /usr/local/src/camram-0.3.25
groupadd camram
useradd -g camram -m -d /usr/local/camram camram
tar xzvf ../raging_dormouse-0.3.25.tar.gz
mv raging_dormouse-0.3.25/* .
bash buildit.sh

You may need to restart the download script if a download error takes place.
The raging_dormouse release will exit the build process if there is a checksum
error in one of the components. The build script will make sure that the appro-
priate third-party applications have been downloaded before continuing on.

After the initial setup script has been run, several additional steps need to take
place. These actions include:

n Setting up the Camram GUI for use under Apache
n Setting up the MTA (Sendmail) to work with Camram
n Configuring a Procmail recipe for use with Camram

A PAC H E I N STA L L ATI O N

Next, install the Camram hooks for the Apache Web server. The installer
attempts to copy the configuration to the Apache configuration directory on
some Linux distributions, namely /etc/httpd/conf. If this is not how Apache is
set up on your system (for example, Debian), then copy the configuration file
manually to the Apache configuration directory and restart Apache like this:

cp -p /usr/local/camram/ancillary/camram.conf/etc/apache/
camram.conf

/etc/init.d/apache restart

S E N DM A I L (MTA) I NTE G R ATI O N

Integrating Camram with Sendmail requires setting up Sendmail to listen on three
IP addresses and ports: we use 127.0.0.1 port 25, 127.0.0.1 port 30025, and the
publicly available inbound interface. Any available IP and port combination can
be used, but these are what Camram recommends, so they are the ones we use.

34 ; L O G I N : V O L . 3 0 , N O . 1

If you set up Sendmail per our examples in other parts of this book,
sendmail.mc is located in /usr/local/src/sendmail-8.12.11/cf/cf/. If your current
configuration is sendmail.cf, then edit your sendmail.mc file and add the follow-
ing three lines, replacing 192.168.16.9 with the public IP address of your Cam-
ram machine that accepts email from the Internet:

DAEMON_OPTIONS('Port=smtp,Addr=192.168.16.9, Name=MTA')dnl
DAEMON_OPTIONS('Port=smtp,Addr=127.0.0.1, Name=MTA')dnl
DAEMON_OPTIONS('Port=30025,Addr=127.0.0.1, Name=MTA')dnl

These lines tell Sendmail to listen to port 25 on its public IP address and local-
host address (127.0.0.1), as well as 30025 on localhost for reinjecting messages
into the MTA. Then rebuild sendmail.cf, install it (saving the old one), and
restart Sendmail:

bash$ sudo su
cd /usr/local/src/sendmail-8.12.11/cf/cf/
make sendmail.cf
cp /etc/mail/sendmail.cf /etc/mail/sendmail.cf.old
cp sendmail.cf /etc/mail/sendmail.cf
/etc/init.d/sendmail restart

Camram is now integrated into your Sendmail installation for all users on the
system.

P RO C M A I L I NTE G R ATI O N

The code below illustrates a procmail recipe showing Camram integration.
This can be specified on a per-user basis by placing the recipe in each user’s
.procmailrc file or in a system-wide /etc/procmailrc file.

MAILDIR=$HOME/Maildir
DEFAULT=$MAILDIR/
ORGMAIL=$MAILDIR/
Directory for storing procmail configuration and log files
PMDIR=/var/log/procmail
Put ## before LOGFILE if you want no logging (not recommended)
LOGFILE=$PMDIR/log
Set to yes when debugging
VERBOSE=no
Remove ## when debugging; set to no if you want minimal logging
LOGABSTRACT=all
Replace $HOME/Msgs with your message directory
Mutt and elm use $HOME/Mail
Pine uses $HOME/mail
Netscape Messenger uses $HOME/nsmail
Some NNTP clients, such as slrn & nn, use $HOME/News
Mailboxes in maildir format are often put in $HOME/Maildir
#MAILDIR=/var/spool/spamtrap # Make sure this directory exists!
##INCLUDERC=$PMDIR/testing.rc
##INCLUDERC=$PMDIR/lists.rc
:0fw
| /usr/local/camram/bin/procmail_filter
:0
* < 2
/dev/null

If you are not using Maildir-formatted mailboxes, you should change the lines
that read

DEFAULT=$MAILDIR/
ORGMAIL=$MAILDIR/

to be

DEFAULT=
ORGMAIL=

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 35

Camram Configuration

Besides the procmail recipe, Camram has three files that can be changed to
adjust its behavior:

n /usr/local/camram/ancillary/global_configuration—Default values; we do
not make any changes to this file

n /var/spool/camram/configuration—Where most site-specific changes are
made to adjust Camram’s functions

n /usr/local/camram/ancillary/camram.local—The email relay script used to
control the parameters when sending messages from Camram

We also cover how to set up appropriate cron jobs and Camram users at the end
of this section.

/ VA R / S P O O L / C A M R A M / CO N F I G U R ATI O N

The valid parameters in the configuration file are the same ones that are valid in
the global_configuration file. The configuration file is broken down into the fol-
lowing sections:

Core
Spam analysis
Spam storage
Filter configuration
User email addresses

All of the changes we list next are confined to the Core section. Besides the ones
we cover here, some of the parameters you should consider adjusting include
any keyword involving a path or any of the CRM114-scoring thresholds. A
default file with just the section headers (listed previously) is created at Camram
install time. You might want to make a copy of this file before making changes to
it. At a minimum, the following parameters should be defined under the Core
section in order to change from their default values:

authorized_users = comma-list:root,esj,dale

This should be a comma-separated list of privileged users who can manage the
server via the GUI.

challenge_URL_base=string:http://mydomain.com/camram/pdgen.cgi

This is the parameter indicating the URL address for the challenge Web page.
Change “mydomain.com” to be the address of your Web server.

correction_URL =string:http://mydomain.com/camram/correct.cgi

This is the URL where users enter corrections for messages misclassified as spam
or ham.

reinjection_SMTP_port = string:30025

This is the port where Camram sends messages back to the MTA. If you used
our example, leave this at 30025.

central_administration = boolean:0

This controls whether end users have access to the CRM114 retraining (0) or
only the administrator has access to retraining (1). We recommend setting this
to 0 so that end users can train their own filters.

password_key=string:notswordfish

This is the key used for the private password mechanism. Be sure to change it!

log_level=integer:1

The default logging level is 1. This value can be anything from 0 to 9, where 0 is
no output and 9 is very verbose. Unless you are troubleshooting a problem, 1
should be acceptable. Messages are logged in /var/log/messages.

36 ; L O G I N : V O L . 3 0 , N O . 1

/ U S R / LO C A L / C A M R A M /A N C I L L A RY/ C A M R A M . LO C A L

The camram.local file is the script that starts up the email forwarder program,
EmailRelay. A few changes need to be made in this file, but before going through
those, be sure to make a copy of the file as it was initially distributed:

cd /usr/local/camram/ancillary
cp -p camram.local camram.local.orig

This makes a backup copy of camram.local as camram.local.orig. This script is
automatically read each time Camram is run, so there is no need to perform any
steps to make changes to this file active. You should consider making the follow-
ing changes to the parameters in this file:

camram_architecture=procmail

If you are running Camram on the same machine as the email boxes (as we are
in our example), this should be procmail; otherwise, it should be set to intercept.

stamper_interface=ip address

This is the IP address of the interface that stamped messages should be accepted
on. ip address should be set to the internal IP address, which accepts email from
users on your local network. Do not set this to any externally available IP ad-
dress or you could stamp messages for spammers!

filter_interface=ip address

This defines the interface of the server where email from the Internet originates.
ip address should be set to an externally accessible interface that the MX record
for your domain is set to, or a host that accepts mail for your domain.

local_smart_host=ip address

This is the machine that knows how to route email from your server/domain or
if your Camram machine is behind a firewall. If your Camram machine is the
smart host gateway, then set this to 127.0.0.1.

After changes are made to this file, the script must be invoked.

Executing the script /etc/init.d/camram.local start will start the script on many
Linux systems.

C RO N J O B S

There are three cron jobs that need to be set up to perform various tasks.
Camram distributes suggested cron entries for each.

/usr/local/camram/ancillary/sweepup.py

This script deletes messages in the Camram dumpster. Be sure to run this often
enough so that directory lookups don’t get too slow when too many files are
present.

/usr/local/camram/ancillary/clean_mail_queue.py

This script forwards feedback to the end user and should be run very often.
Camram’s example cron job runs every minute.

/usr/local/camram/ancillary/mbox2spamtrap.py

This script automatically scans the missed_spam_box folder for messages incor-
rectly classified by CRM114 and retrains it accordingly.

; LO G I N : F E B R UA RY 2 0 0 5 I S PA DM I N 37

S E T TI N G U P C A M R A M U S E R S

Each user who is going to have email (we assume all users) will need to have the
appropriate directory and files set up on the system. This is accomplished by
running the following script for every user on the system:

/usr/local/camram/ancillary/clean_configuration.py -u username

You need to change username to be the user you want to set up on the system. If
you are running Camram in intercept mode (without delivery to mailboxes on
the machine Camram is running on), you need to create those accounts with the
following command:

/usr/local/camram/ancillary/new_account.py -u username

If you are running in procmail mode (like we are in our example), the accounts
already exist as “real” UNIX users, so this step must be skipped.

After setting up your users, you must run the edit_config_cgi script to create
user accounts and set up the database by going to the URL http://mydomain
.com/camram/edit_config.cgi. Change “mydomain.com” to be the name of the
Camram server you set previously. See the next section for using this screen.

Using Camram

Camram classifies messages into three possible categories:

n Red—Definitely spam; delivered to junk email folder

n Yellow—Possibly spam, possibly non-spam; delivered to spamtrap (possibly
spam) folder

n Green—Definitely not spam; delivered to inbox

This results in an accurate classification system of messages, and it requires
users to look in their spamtrap folder. Camram has a Web interface for accessing
many functions. If you have followed our previous examples, the following
screens are available at the listed URLs.

http://mydomain.com/camram/edit_config.cgi

The edit_config screen allows the administrator to edit the default settings for
each user and should be run after adding each user, to perform initial setup.

http://mydomain.com/camram/correct.cgi

This screen allows the user to correct CRM114 misclassifications via a Web
browser.

http://mydomain.com/camram/recover.cgi

The recover screen allows user access to the junk email folder (Camram calls it
the dumpster) from a Web browser.

P R E F E R E N C E S

The parameters in the edit_prefs.cgi screen are stored in each user’s home direc-
tory, in ~user/.camram/configuration. However, the parameters should be
changed only by the preferences Web interface and not directly via editing the
file, as changes will likely get overwritten. The parameters listed here are the
same ones that are defined by the global_configuration file shown previously.

The defaults here are reasonable. The field labeled my_email_addresses
should be updated with all aliases for each user. These addresses represent the
addresses for which Camram will accept Hashcash stamps for this account.

38 ; L O G I N : V O L . 3 0 , N O . 1

S PA MTR A P

The correct.cgi screen allows each user to manage their spamtrap (yellow mes-
sages), which is the mail folder containing messages that Camram was unsure
about when it ran the classifier on them. Simply check the checkbox on the left
side for each misclassified message and click the Process button, and your mes-
sages will be sent to your inbox and the Bayesian classifier will be retrained.

R E COV E R

The recover.cgi screen lists all messages in the dumpster and inbox. This screen
allows you to pull false positive messages out of the dumpster and into the
spamtrap for reclassification. Copies of all messages processed and classified as
spam or not spam will end up in the dumpster. Do not be alarmed by the pres-
ence of non-spam emails. It is unfortunate that the dumpster contains more
than just rejected spam messages because you can’t just browse it quickly to
identify false positives.

