
R I K F A R R O W

musings
Rik Farrow provides UNIX and Internet security
consulting and training. He is the author of
UNIX System Security and System Administrator’s
Guide to System V.

rik@spirit.com

A C U R I O U S C O N F L U E N C E O F E V E N T S
has prompted me to renew my acquain-
tance with NFS security. For some reason, I
had allowed NFS to slip from my awareness
some time ago. Perhaps it was because the
problems facing those who wanted to use
NFS securely seemed overwhelming. Just as
likely, other new things that glittered and
shimmered with expectation grabbed my
attention, leaving the venerable NFS to sit
ignored in a corner.

But only by me. Many organizations rely on NFS,
including my friends at San Diego Supercomputing
Center. Elsewhere in this issue, you should find a tale
told by Abe Singer about the experience he and his
fellow workers had with an intrusion that began in
Spring of 2004. The intruder continued to abuse
SDSC systems for weeks and, at some point, took
advantage of old, known weaknesses in NFS to do so.

While in Atlanta teaching my class for LISA, I asked
how many people were using NFS in their organiza-
tions and was surprised by the result. I guess I had
been asking the same question in the wrong venues,
because lots of people indicated that they were using
NFS. That, coupled with listening to Brian
Pawlowski’s (Netapp.com) Invited Talk about the
future of NFS, really got me interested.

The Past

NFS started out at UC Berkeley and then was adopted
by Sun Microsystems. The concept of a network file
system didn’t start with NFS but had (at least) one
earlier, significant implementation. Apollo Domain
had a network file system, along with single sign-on,
unified user accounts, and home directories sup-
ported via the network file systems. You could log on
to any Apollo workstation and get your home envi-
ronment. While this may sound familiar, the underly-
ing architecture paid serious attention to security.
Apollo also had signed patches that could be centrally
installed by the system administrator. But I digress.

NFS security, ever since its beginning, had barely
existed. I won’t say it didn’t exist; that would be
unfair. And today, most organizations continue to use
the earliest form of NFS security, not because nothing
else exists, but because it is the lowest common
denominator and works on anything that supports
NFS.

; LO G I N : F E B R UA RY 2 0 0 5 M U S I N G S 17

In the past, NFS security took two forms: user identifi-
cation, and IP address–based access control. Let’s talk
about user identification first.

The user identification is called AUTH_UNIX, a some-
what misleading name, as AUTH hints at authentica-
tion, when there really is none at all. In AUTH_UNIX,
each Remote Procedure Call (RPC) request sent to an
NFS server includes the requesting user’s ID number
(UID). The UID gets assigned to your account via your
/etc/passwd entry associated with your login shell and is
used to signify ownership of files by being included in
file attributes (within inodes). You can see the UID and
GIDs (group IDs) associated with files when you use
the command ls -ln (the -n option suppresses the con-
version of UIDs to names).

NFS includes this very same UID, along with up to 16
GIDs, in each RPC request. The UID and GIDs will then
be used to determine access to files and directories on
the NFS server. Perhaps at this point you have dis-
cerned why I don’t call AUTH_UNIX authentication.
While a UID may be used to identify a user, it is not in
itself a form of authentication. Anyone who can mani-
pulate the RPC request can insert any UID he or she
wants. No authentication is required to do this. None at
all.

A Curious Tool

Back in 1991, Leendert van Doorn wrote a tool he called
the nfsshell. The nfsshell generates legal NFS client
requests, with the optional feature that the user of
nfsshell can insert the desired UID into any request. No
special privilege is required to use nfsshell—that is, you
can run nfsshell as an ordinary user and can easily mas-
querade as other users when accessing an NFS server.

Van Doorn, who now works for IBM (he is shown act-
ing as an antenna in his signature page, http://www
.research.ibm.com/people/l/leendert/), created nfsshell
to demonstrate the insecurity of AUTH_UNIX. You
can find a copy of nfsshell on Van Doorn’s Web page,
although you will need to find patches, and perhaps an
include file, if you want to get this working on Linux.

I configured an old Solaris system (2.7) to act as an NFS
server, then tested it using a Linux system. Then I fired
up nfsshell and started experimenting. Nfsshell worked
as advertised in that I could create a file on the NFS
server that could only be read by some other user,
change the UID with nfsshell to be the same as that
user, and read that file. The interface to nfsshell is simi-
lar to FTP or smbclient in general outline, and not at all
hard to use.

One saving grace to NFS that I should point out is that
by default UID zero, or root, gets mapped to -2 (user-
name “nobody,” by tradition). So changing the UID to 0

in nfsshell usually works worse than picking on some
other UID. Note that you can disable this safety feature
on your NFS server by exporting or sharing directories
and using the option anon=0. You really don’t want to
do this. You can use the root option with a list of host-
names if you really want to permit root access to spe-
cific systems. This feature was designed for diskless
workstations, pretty rare beasts these days.

At this point, NFS users should be either experiencing
shock or muttering to themselves, “I knew it was so.”
On a more practical note, you should be wondering
what you can do to add real security to NFS. After all,
this is a disaster, isn’t it?

NFS also started out with host-based access control.
That is, the person who configured the NFS server
could limit which clients could mount an exported
(“shared” in Solaris) file system. There have been loads
of problems with this scheme, some involving bugs,
others involving configuration errors, and many mean-
ing that file systems were exported to the world. Dan
Farmer and Wietse Venema’s SATAN scanner (1995)
alarmed the world when released, as well as alarming
NFS administrators when the tool would announce file
systems exported to the world.

Another problem with earlier versions of NFS is that
they relied on UDP for transport. UDP was chosen
because it is stateless and was quite a bit faster than
TCP back in the early eighties. UDP is also trivial to
spoof, making it easy to get around the host-based
access control, which relies on the IP address of the
client. NFS versions 3 and 4 support TCP instead of
UDP as the transport mechanism, and you can include
“tcp” in the options when you export or share file sys-
tems, forcing the use of TCP.

Host-based access control does not solve the problem of
authentication. For that, real authentication, based on
cryptography, is required.

Authentic

Even before Van Doorn’s nfsshell appeared, people were
concerned about the lack of authentication in NFS. Sun
Microsystems developed AUTH_DH, where DH stands
for Diffie-Hellman key exchange. (AUTH_DH used to be
called AUTH_DES, but I am using its more modern
label.) Instead of simply relying on a UID, AUTH_DH
uses Diffie-Hellman to exchange session keys for each
user. The session key is used to encrypt a pair of time-
stamps that are included in the RCP header. If the
decryption fails, or the timestamp falls outside a five-
minute window, then the request is considered unau-
thenticated.

AUTH_DH relies either on NIS to distribute public and
private keys or on the manual distribution of the

18 ; L O G I N : V O L . 3 0 , N O . 1

; LO G I N : F E B R UA RY 2 0 0 5 M U S I N G S 19

/etc/publickey file to all NFS servers and clients. Every
time a user changes her password, the public key file
must be updated, so practical use of AUTH_DH seems
to imply use of NIS as well. You can read more about
using AUTH_DH in O’Reilly’s Managing NFS and NIS.

Generic Security Services for RPC, or RPCSEC_GSS,
represents the emerging alternative to AUTH_DH. GSS
can support not only authentication but also integrity
and privacy, and support for all three have been added
to NFSv4 and in some cases are included in patches for
older versions of NFS. GSS can use multiple security
providers, with Kerberos v5 being the most common.

Setting up a Kerberos Domain is in many ways akin to
setting up NIS servers, in that you need secure systems
to run the Kerberos Distribution Center (KDC), as well
as slave servers for backups. I had hoped to torture
myself by setting up a KDC for this column but, fortu-
nately, ran out of time. If you have a Kerberos infra-
structure or have been moved by a real desire for NFS
security to set one up, by adding krb5 to the export or
share options, you can inform your NFS servers to per-
mit access only to NFS clients that can handle Ker-
beros v5 authentication.

NFSv4 is not limited to Kerberos support for authenti-
cation; it is also beginning to include support for SSL-
style authentication using LIPKEY/SPKM plugged into
the lower layers of GSS instead of Kerberos. The
advantage to SPKM is that NFS RPC requests can be
authenticated by installing public key certificates for
NFS servers or the CAs for those servers on client sys-
tems, similar to the way in which Web browsers
include certificates for signing authorities. Using SSL, a
session key gets generated and is used to sign RPC
headers. Once again, you can add real authentication,
but this time without setting up either NIS or Kerberos.

The downside to RPCSEC_GSS is that support for it is
still very thin. Sun Microsystems has both clients and
servers, and Kerberos support is included in newer
versions of HP/UX and with AIX 5.2 (with a requested
addition). But support in the Linux and BSD world is
not quite there yet. You can visit http://www.linux-nfs
.org and volunteer your efforts (or other forms of assis-
tance) or check out CITI for FreeBSD support
(http://www.citi.umich.edu/u/rees/). You can also read

more about the state of NFS security in Michael Eisler’s
presentation about it: http://www.nfsconf.com/pres03
/eisler.pdf.

There are other things you should do when using NFS.
When exporting directories, it is wise to disable the
use of set-user-ID and device files on the exporting
server. The options nosuid and nodev in the export or
share statement handle this and prevent a miscreant
who has gotten root on a server from creating an SUID
shell that will work on all systems that have mounted
the file system. Note that clients can use the same flags
when mounting remote file systems, disabling the use
of SUID and device files from a possibly compromised
remote system.

You might think that perhaps CIFS, Microsoft’s Com-
mon Internet File System, would be a more secure
choice. While it is true that CIFS (supported as Samba
on UNIX systems) does include real authentication, it
is not the same as NFS. For one thing, CIFS is oriented
toward added file shares for one user at a time. That is,
instead of mounting a file system for use by all users,
you instead mount a file share using a username and
password for one user. CIFS does not send plaintext
passwords across the network (unless misconfigured),
but the challenge-response pairs it does use can be
cracked and passwords guessed.

Microsoft responded to this threat by beginning to sup-
port (you guessed it) Kerberos v5 with Windows 2000.
Note that MS Kerberos v5 has some proprietary exten-
sions added to each ticket that are only of use (or inter-
est to) Microsoft systems. While MS Kerberos could be
used to support UNIX systems (as the additional cruft
will be ignored), the reverse is not true. Do you really
expect some self-respecting UNIX system to under-
stand the wacky, variable-length data structures that
Microsoft uses as Security Identifiers (SIDs)? Perhaps
some day.

So, sure, you can use CIFS instead of NFS. But really,
NFS with Kerberos support is just as secure, and more,
uh, UNIXy as well.

I wish I could say more, especially after having man-
aged to disturb at least some of my readers, but that is
the state of the art today.

