
	 ;login: FEBRUARY 2013   61

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009).

He is also a co-author of the forthcoming
Python Cookbook (3rd Edition, O’Reilly &
Associates, 2013). Beazley is based in
Chicago, where he also teaches a variety of
Python courses. dave@dabeaz.com

In the August 2012 issue of ;login:, I explored some of the inner workings of Python’s
import statement. Much of that article explored the mechanism that’s used to set
up the module search path found in sys.path as well as the structure of a typical
Python installation. At the end of that article, I promised that there is even more
going on with import than meets the eye. So, without further delay, that’s the topic
of this month’s article.

Just as a note, this article assumes the use of Python 2.7. Also, because of the
advanced nature of the material, I encourage you to follow along with the interac-
tive examples as they nicely illustrate the mechanics of it all.

Import Revisited
Just to revisit a few basics, each Python source file that you create is a module that
can be loaded with the import statement. To make the import work, you simply
need to make sure that your code can be found on the module search path sys.path.
Typically, sys.path looks something like this:

>>> import sys

>>> sys.path

[‘’,

 ‘/usr/local/lib/python2.7/site-packages/setuptools-0.6c11-py2.7.egg’,

 ‘/usr/local/lib/python2.7/site-packages/pip-1.1-py2.7.egg’,

 ‘/usr/local/lib/python2.7/site-packages/python_dateutil-1.5-py2.7.egg’,

 ‘/usr/local/lib/python2.7/site-packages/pandas-0.7.3-py2.7-macosx-

10.4-x86_64.egg’,

 ‘/usr/local/lib/python2.7/site-packages/tornado-2.1-py2.7.egg’,

 ‘/usr/local/lib/python27.zip’,

 ‘/usr/local/lib/python2.7’,

 ‘/usr/local/lib/python2.7/plat-darwin’,

 ‘/usr/local/lib/python2.7/plat-mac’,

 ‘/usr/local/lib/python2.7/plat-mac/lib-scriptpackages’,

 ‘/usr/local/lib/python2.7/lib-tk’,

 ‘/usr/local/lib/python2.7/lib-old’,

 ‘/usr/local/lib/python2.7/lib-dynload’,

 ‘/Users/beazley/.local/lib/python2.7/site-packages’,

 ‘/usr/local/lib/python2.7/site-packages’]

>>>

Python: Import Anything
D A V I D B E A Z L E Y

62   ;login: VOL. 38, NO. 1

For most Python programmers (including myself until recently), knowledge of the
import statement doesn’t extend far beyond knowing about the path and the fact
that it sometimes needs to be tweaked if code is placed in an unusual location.

Making Modules Yourself
Although most modules are loaded via import, you can actually create module
objects yourself. Here is a simple interactive example you can try just to illustrate:

>>> import imp

>>> mod = imp.new_module(“mycode”)

>>> mod.__file__ = ‘interactive’

>>> code = ‘’’

... def hello(name):

... print “Hello”, name

...

... def add(x,y):

... return x+y

... ‘’’

>>> exec(code, mod.__dict__)

>>> mod

<module ‘mycode’ from ‘interactive’>

>>> dir(mod)

[‘__builtins__’, ‘__doc__’, ‘__file__’, ‘__name__’, ‘__package__’, ‘add’,

‘hello’]

>>> mod.hello(‘Dave’)

Hello Dave

>>> mod.add(10,20)

30

>>>

Essentially, if you want to make a module you simply use the imp.new_module()
function. To populate it, use the exec statement to execute the code you want in
the module.

As a practical matter, the fact that you can make modules from scratch (bypass-
ing import) may be nothing more than a curiosity; however, it opens a new line of
thought. Perhaps you could create modules in an entirely different manner than
a normal import statement, such as grabbing code from databases, from remote
machines, or different kinds of archive formats. What’s more, if all of this is pos-
sible, perhaps there is some way to customize the behavior of import directly.

Creating an Import Hook
Starting around Python 2.6 or so, the sys module acquired a mysterious new vari-
able sys.meta_path. Initially, it is set to an empty list:

>>> import sys

>>> sys.meta_path

[]

>>>

What purpose could this possibly serve? To find out, try the following experiment:

	 ;login: FEBRUARY 2013 Python: Import Anything   63

>>> class Finder(object):

... def find_module(self, fullname, path=None):

... print “Looking for”, fullname, path

... return None

...

>>> import sys

>>> sys.meta_path.append(Finder())

>>> import math

Looking for math None

>>> import xml.etree.ElementTree

Looking for xml None

Looking for xml._xmlplus [‘/usr/local/lib/python2.7/xml’]

Looking for _xmlplus None

Looking for xml.etree [‘/usr/local/lib/python2.7/xml’]

Looking for xml.etree.ElementTree [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.sys [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.re [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.warnings [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.ElementPath [‘/usr/local/lib/python2.7/xml/etree’]

Looking for xml.etree.ElementC14N [‘/usr/local/lib/python2.7/xml/etree’]

Looking for ElementC14N None

>>>

Wow, look at that! The find_module() method of the Finder class you just wrote
is suddenly being triggered on every single import statement. As input, it receives
the fully qualified name of the module being imported. If the module is part of
a package, the path argument is set to the package’s __path__ variable, which
is typically a list of subdirectories that contain the package subcomponents.
With packages, there are also a few unexpected oddities. For example, notice the
attempted imports of xml.etree.sys and xml.etree.re. These are actually imports
of sys and re occurring inside the xml.etree package. (Later these are tested for a
relative and then absolute import.)

As output, the find_module() either returns None to indicate that the module isn’t
known or returns an instance of a loader object that will carry out the process of
loading the module and creating a module object. A loader is simply some object
that defines a load_module method that returns a module object created in a man-
ner as shown earlier. Here is an example that mirrors the creation of the module
that was used earlier:

>>> import imp

>>> import sys

>>> class Loader(object):

... def load_module(self, fullname):

... mod = sys.modules.setdefault(fullname, imp.new_module(fullname))

... code = ‘’’

... def hello(name):

... print “Hello”, name

...

... def add(x,y):

... return x+y

... ‘’’

... exec(code, mod.__dict__)

... return mod

64   ;login: VOL. 38, NO. 1

...

>>> class Finder(object):

... def find_module(self, fullname, path):

... if fullname == ‘mycode’:

... return Loader()

... else:

... return None

...

>>> sys.meta_path.append(Finder())

>>> import mycode

>>> mycode.hello(‘Dave’)

Hello Dave

>>> mycode.add(2,3)

5

>>>

In this example, the code is mostly straightforward. The Finder class creates a
Loader instance. The loader, in turn, is responsible for creating the module object
and executing the underlying source code. The only part that warrants some
discussion is the use of sys.modules.setdefault(). The sys.modules variable is a
cache of already loaded modules. Updating this cache as appropriate during import
is the responsibility of the loader. The setdefault() method makes sure that this
happens cleanly by either returning the module already present or a new module
created by imp.new_module() if needed.

Using Import Hooks
Defining an import hook opens up a variety of new programming techniques. For
instance, here is a finder that forbids imports of certain modules:

forbidden.py

import sys

class ForbiddenFinder(object):

 def __init__(self, blacklist):

 self._blacklist = blacklist

 def find_module(self, fullname, path):

 if fullname in self._blacklist:

 raise ImportError()

def no_import(module_names):

 sys.meta_path.append(ForbiddenFinder(module_names))

Try it out:

>>> import forbidden

>>> forbidden.no_import([‘xml’,’threading’,’socket’])

>>> import xml

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named xml

>>> import threading

	 ;login: FEBRUARY 2013 Python: Import Anything   65

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named threading

>>>

Here is a more advanced example that allows callback functions to be attached to
the import of user-specified modules:

postimport.py

import importlib

import sys

from collections import defaultdict

_post_import_hooks = defaultdict(list)

class PostImportFinder:

 def __init__(self):

 self._skip = set()

 def find_module(self, fullname, path):

 print “Finding”, fullname, path

 if fullname in self._skip:

 return None

 self._skip.add(fullname)

 return PostImportLoader(self)

class PostImportLoader:

 def __init__(self, finder):

 self._finder = finder

 def load_module(self, fullname):

 try:

 importlib.import_module(fullname)

 modname = fullname

 except ImportError:

 package, _, modname = fullname.rpartition(‘.’)

 if package:

 try:

 importlib.import_module(modname)

 except ImportError:

 return None

 else:

 return None

 module = sys.modules[modname]

 for func in _post_import_hooks[modname]:

 func(module)

 _post_import_hooks[modname] = []

 self._finder._skip.remove(fullname)

 return module

66   ;login: VOL. 38, NO. 1

def on_import(modname, callback):

 if modname in sys.modules:

 callback(sys.modules[modname])

 else:

 _post_import_hooks[modname].append(callback)

sys.meta_path.insert(0, PostImportFinder())

The idea on this hook is that it gets triggered on each import; however, immediately
upon firing, it disables itself from further use. The load_module() method in the
PostImportLoader class then carries out the regular import and triggers the reg-
istered callback functions. There is a bit of a mess concerning attempts to import
the requested module manually. If an attempt to import the fully qualified name
doesn’t work, a second attempt is made to import just the base name.

To see it in action, try the following:

>>> from postimport import on_import

>>> def loaded(mod):

... print “Loaded”, mod

...

>>> on_import(‘math’, loaded)

>>> on_import(‘threading’, loaded)

>>> import math

Loaded <module ‘math’ from ‘/usr/local/lib/python2.7/lib-dynload/math.so’>

>>> import threading

Loaded <module ‘threading’ from ‘/usr/local/lib/python2.7/threading.pyc’>

>>>

Although a simple example has been shown, you could certainly do something
more advanced such as patch the module contents. Consider this additional code
that adds logging to selected functions:

def add_logging(func):

 ‘Decorator that adds logging to a function’

 def wrapper(*args, **kwargs):

 print(“Calling %s.%s” % (func.__module__, func.__name__))

 return func(*args, **kwargs)

 return wrapper

def log_on_import(qualified_name):

 ‘Apply logging decorator to a function upon import`

 modname, _, symbol = qualified_name.rpartition(‘.’)

 def patch_module(mod):

 setattr(mod, symbol, add_logging(getattr(mod, symbol)))

 on_import(modname, patch_module)

Here is an example:

>>> from postimport import log_on_import

>>> log_on_import(‘math.tan’)

>>>

>>> import math

>>> math.tan(2)

Calling math.tan

	 ;login: FEBRUARY 2013 Python: Import Anything   67

-2.185039863261519

>>>

You might look at something like this with horror; however, you could also view
it as a way to manipulate a large code base without ever touching its source code
directly. For example, you could use an import hook to insert probes, selectively
rewrite part of the code, or perform other actions on the side.

Path-Based Hooks
Manipulation of sys.meta_path is not the only way to hook into the import
statement. As it turns out, there is another variable sys.path_hooks that can
be manipulated. Take a look at it:

>>> import sys

>>> sys.path_hooks

[<type ‘zipimport.zipimporter’>]

>>>

The items on sys.path_hooks are callables that process individual items in the
sys.path list, and it either responds with an ImportError or it returns a finder
object that is used to load modules from that path component. Try this experiment:

>>> import sys

>>> def check_path(name):

... print “Checking”, repr(name)

... raise ImportError()

...

>>> sys.path_hooks.insert(0, check_path)

>>> # Clear the cache to have all path entries rechecked

>>> sys.path_importer_cache.clear()

>>> import foo

Checking ‘’

Checking ‘/usr/local/lib/python27.zip’

Checking ‘/usr/local/lib/python2.7’

Checking ‘/usr/local/lib/python2.7/plat-darwin’

Checking ‘/usr/local/lib/python2.7/plat-mac’

Checking ‘/usr/local/lib/python2.7/plat-mac/lib-scriptpackages’

Checking ‘/usr/local/lib/python2.7/lib-tk’

Checking ‘/usr/local/lib/python2.7/lib-old’

Checking ‘/usr/local/lib/python2.7/lib-dynload’

Checking ‘/usr/local/lib/python2.7/site-packages’

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named foo

>>>

Notice how every entry on sys.path is checked by our function. To expand this
code, you would make the check_path() function look for a specific pathname
pattern. If found, it returns a special finder object that’s similar to before. Try this:

>>> class Finder(object):

... def find_module(self, name, path=None):

... print “Looking for”, name, path

... return None

68   ;login: VOL. 38, NO. 1

...

>>> def check_path(name):

... if name.endswith(‘.spam’):

... return Finder()

... else:

... raise ImportError()

...

>>> import sys

>>> sys.path_hooks.append(check_path)

>>> import foo

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named foo

>>> sys.path.append(‘code.spam’)

>>> import foo

Looking for foo None # Notice Finder output here

Traceback (most recent call last):

 File “<stdin>”, line 1, in

ImportError: No module named foo

>>>

This technique of hooking into sys.path is how Python has been expanded to
import from .zip files and other formats.

Final Words and the Big Picture
Hacking of Python’s import statement has been around for quite some time, but
it’s often shrouded in magic and mystery. Frameworks and software development
tools will sometimes do it to carry out advanced operations across an entire code
base; however, the whole process is poorly documented and underspecified. For
instance, internally, Python 2.7 doesn’t use the same machinery as extensions to
the import statement. Frankly, it’s a huge mess.

One of the most significant changes in the recent Python 3.3 release is an almost
complete rewrite and formalization of the import machinery described here.
Internally, it now uses sys.meta_path and path hooks for all stages of the import
process. As a result, it’s much more customizable (and understandable) than
previous versions.

Having seen of all of this, should you now start hacking on import? Probably not;
however, if you want to have a deep understanding of how Python is put together
and how to figure things out when they break, knowing a bit about it is useful. For
more information about import hooks, see PEP 302, http://www.python.org/dev/
peps/pep-0302/.

