
36  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

PROGRAMMINGCuckoo Filter: Better Than Bloom
B I N F A N , D A V I D G . A N D E R S E N , A N D M I C H A E L K A M I N S K Y

Bin Fan is a Ph.D. student in the
Computer Science Department
at Carnegie Mellon University.
His research interests include
networking systems, storage

systems, and distributed systems. He is in
the Parallel Data Lab (PDL) at CMU and also
works closely with Intel Labs.
binfan@cs.cmu.edu

Michael Kaminsky is a Senior
Research Scientist at Intel
Labs and an adjunct faculty
member in the Computer Sci-
ence Department at Carnegie

Mellon University. He is part of the Intel
Science and Technology Center for Cloud
Computing (ISTC-CC), based in Pittsburgh,
PA. His research interests include distributed
systems, operating systems, and networking.
michael.e.kaminsky@intel.com

David G. Andersen is an Asso-
ciate Professor of Computer
Science at Carnegie Mellon
University. He completed his
S.M. and Ph.D. degrees at MIT,

and holds BS degrees in Biology and Computer
Science from the University of Utah. In 1995,
he co-founded an Internet Service Provider in
Salt Lake City, Utah.  dga@cs.cmu.edu

High-speed approximate set-membership tests are critical for many
applications, and Bloom filters are used widely in practice, but do
not support deletion. In this article, we describe a new data struc-

ture called the cuckoo filter that can replace Bloom filters for many approxi-
mate set-membership test applications. Cuckoo filters allow adding and
removing items dynamically while achieving higher lookup performance,
and also use less space than conventional, non-deletion-supporting Bloom
filters for applications that require low false positive rates (ϵ< 3%).

Set-membership tests determine whether a given item is in a set or not. By allowing a small
but tunable false positive probability, set-membership tests can be implemented by Bloom
filters [1], which cost a constant number of bits per item. Bloom filters are efficient for repre-
senting large and static sets, and thus are widely used in many applications from caches and
routers to databases; however, the existing items cannot be removed from the set without
rebuilding the entire filter. In this article, we present a new, practical data structure that is
better for applications that require low false positive probabilities, handle a mix of “yes” and
“no” answers, or that need to delete items from the set.

Several proposals have extended classic Bloom filters to add support for deletion but with
significant space overhead: counting Bloom filters [5] are four times larger and the recent
d-left counting Bloom filters (dl-CBFs) [3, 2], which adopt a hash table-based approach, are
still about twice as large as a space-optimized Bloom filter. This article shows that support-
ing deletion for approximate set-membership tests does not require higher space overhead
than static data structures like Bloom filters. Our proposed cuckoo filter can replace both
counting and traditional Bloom filters with three major advantages: (1) it supports add-
ing and removing items dynamically; (2) it achieves higher lookup performance; and (3) it
requires less space than a space-optimized Bloom filter when the target false positive rate
ϵ is less than 3%. A cuckoo filter is a compact variant of a cuckoo hash table [7] that stores
fingerprints (hash values) for each item inserted. Cuckoo hash tables can have more than
90% occupancy, which translates into high space efficiency when used for set membership.

Bloom Filter Background
Standard Bloom filters allow a tunable false positive rate ϵ so that a query returns either
“definitely not” (with no error) or “probably yes” (with probability ϵ of being wrong). The
lower ϵ is, the more space the filter requires. An empty Bloom filter is a bit array with all bits
set to “0”, and associates each item with k hash functions. To add an item, it hashes this item
to k positions in the bit array, and then sets all k bits to “1”. Lookup is processed similarly,
except it reads k corresponding bits in the array: if all the bits are set, the query returns posi-
tive; otherwise it returns negative. Bloom filters do not support deletion, thus removing even
a single item requires rebuilding the entire filter.

Counting Bloom filters support delete operations by extending the bit array to a counter
array. An insert then increments the value of k counters instead of simply setting k bits, and
lookup checks whether each of the required counters is non-zero. The delete operation dec-
rements the values of the k counters. In practice the counter usually consists of four or more

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 37

PROGRAMMING
Cuckoo Filter: Better Than Bloom

bits, and a counting Bloom filter therefore requires four times
more space than a standard Bloom filter.

The work on d-left counting Bloom filters (dl-CBFs) [2, 3] is
intellectually closest to our cuckoo filter. A dl-CBF constructs a
hash table for all known items by d-left hashing [6], but replaces
each item with a short fingerprint (i.e., a bit string derived from
the item using a hash function). The dl-CBFs can reduce the
space cost of counting Bloom filters, but still require twice the
space of a space-optimized Bloom filter.

Cuckoo Filter
The cuckoo filter is a compact data structure for approximate
set-membership queries where items can be added and removed
dynamically in O(1) time. Essentially, it is a highly compact
cuckoo hash table that stores fingerprints (i.e., short hash val-
ues) for each item.

Basic Cuckoo Hash Table
Cuckoo hashing is an open addressing hashing scheme to con-
struct space-efficient hash tables [7]. A basic cuckoo hash table
consists of an array of buckets where each item has two candi-
date buckets determined by hash functions h1(·) and h2(·) (see
Figure 1). Looking up an item checks both buckets to see whether
either contains this item. If either of its two buckets is empty,
we can insert a new item into that free bucket; if neither bucket
has space, it selects one of the candidate buckets (e.g., bucket 6),
kicks out the existing item (“a”), and re-inserts this victim item
to its own alternate location (bucket 4). Displacing the victim
may also require kicking out another existing item (“c”), so this
procedure may repeat until a vacant bucket is found, or until a
maximum number of displacements is reached (e.g., 500 times
in our implementation). If no vacant bucket is found, the hash
table is considered too full to insert and an expansion process is
scheduled. Though cuckoo hashing may execute a sequence of
displacements, its amortized insertion time is still O(1). Cuckoo
hashing ensures high space occupancy because it can refine
earlier item-placement decisions when inserting new items.

Proper configuration of various cuckoo hash table parameters
can ensure table occupancy more than 95%.

Dynamic Insert
When inserting new items, cuckoo hashing may relocate exist-
ing items to their alternate locations in order to make room
for the new ones. Cuckoo filters, however, store only the items’
fingerprints in the hash table and therefore have no way to read
back and rehash the original items to find their alternate loca-
tions (as in traditional cuckoo hashing). We therefore propose
partial-key cuckoo hashing to derive an item’s alternate location
using only its fingerprint. For an item x, our hashing scheme
calculates the indexes of the two candidate buckets i1 and i2 as
follows:

i1= HASH(x),

i2= i1 ⊕HASH(x′s fingerprint).

Eq. (1)

The exclusive-or operation in Eq. (1) ensures an important prop-
erty: i1 can be computed using the same formula from i2 and the
fingerprint; therefore, to displace a key originally in bucket i (no
matter whether i is i1 or i2), we can directly calculate its alter-
nate bucket j from the current bucket index i and the fingerprint
stored in this bucket by

j = i ⊕HASH(fingerprint).

Eq. (2)

Hence, insertion can complete using only information in the
table, and never has to retrieve the original item x.

Note that we hash the fingerprint before it is XOR-ed with the
index of its current bucket, in order to help distribute the items
uniformly in the table. If the alternate location is calculated by “i
⊕Fingerprint” without hashing the fingerprint, the items kicked
out from nearby buckets will land close to each other in the table,
assuming the size of the fingerprint is small compared to the
table size. Hashing ensures that items kicked out can land in an
entirely different part of the hash table.

Does Partial-Key Cuckoo Hashing Ensure High
 Occupancy?
 The values of i1 and i2 calculated by Eq. (1) are uniformly distrib-
uted, individually. They are not, however, necessarily indepen-
dent of each other (as required by standard cuckoo hashing).
Given the value of i1, the number of possible values of i2 is at most
2f where each fingerprint is f bits; when f ≤ log2r where r is the
total number of buckets, the choice of i2 is only a subset of all the
r buckets of the entire hash table. For example, using one-byte
fingerprints, given i1 there are only up to 2f=256 different pos-
sible values of i2 across the entire table; thus i1 and i2 are depen-
dent when the hash table contains more than 256 buckets. This
situation is relatively common, for example, when the cuckoo

Figure 1: A cuckoo hash table with eight buckets

38  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

PROGRAMMING
Cuckoo Filter: Better Than Bloom

filter targets a large number of items but a moderately low false
positive rate.

The table occupancy, though, can still be close to optimal in most
cases (where optimal is when i1 and i2 are fully independent). We
empirically show in the Evaluation section that this algorithm
achieves close-to-optimal load when each fingerprint is suffi-
ciently large.

Dynamic Delete
With partial-key cuckoo hashing, deletion is simple. Given an
item to delete, we check both its candidate buckets; if there is a
fingerprint match in either bucket, we just remove the finger-
print from that bucket. This deletion is safe even if two items
stored in the same bucket happen to have the same fingerprint.
For example, if item x and y have the same fingerprint, and both
items can reside in bucket i1, partial-key cuckoo hashing ensures
that bucket i2 = i1 ⊕HASH(fingerprint) must be the other candi-
date bucket for both x and y. As a result, if we delete x, it does not
matter if we remove the fingerprint added when inserting x or
y; the membership of y will still return positive because there is
one fingerprint left that must be reachable from either bucket
i1 and i2.

Optimizing Space Efficiency
Set-Associativity: Increasing bucket capacity (i.e., each bucket
may contain multiple fingerprints) can significantly improve
the occupancy of a cuckoo hash table [4]; meanwhile, comparing
more fingerprints on looking up each bucket also requires longer
fingerprints to retain the same false positive rate (leading to
larger tables). We explored different configuration settings and
found that having four fingerprints per bucket achieves a sweet
point in terms of the space overhead per item. In the following,
we focus on the (2,4)-cuckoo filters that use two hash functions
and four fingerprints per bucket.

Semi-Sorting: During lookup, the fingerprints (i.e., hashes) in a
single bucket are compared against the item being tested; their
relative order within this bucket does not affect query results.
Based on this observation, we can compress each bucket to save
one bit per item, by “semi-sorting” the fingerprints and encoding
the sorted fingerprints. This compression scheme is similar to

the “semi-sorting buckets” optimization used in [2]. Let us use
the following example to illustrate how the compression works.

When each bucket contains four fingerprints and each finger-
print is four bits, an uncompressed bucket occupies 16 bits; how-
ever, if we sort all four four-bit fingerprints in this bucket, there
are only 3,876 possible outcomes. If we precompute and store
all of these 3,876 16-bit buckets in an extra table, and replace
the original bucket with an index into the precomputed table,
each bucket can be encoded by 12 bits rather than 16 bits, saving
one bit per fingerprint (but requiring extra encoding/decoding
tables).

Comparison with Bloom Filter
When is our proposed cuckoo filter better than Bloom filters?
The answer depends on the goals of the applications. This sec-
tion compares Bloom filters and cuckoo filters side-by-side using
the metrics shown in Table 1 and several additional factors.

Space efficiency: Table 1 compares space-optimized Bloom
filters and (2,4)-cuckoo filters with and without semi-sorting.
Figure 2 further shows the trend of these schemes when varies
from 0.001% to 10%. The information theoretical bound requires
log2(1/ϵ) bits for each item, and an optimal Bloom filter uses 1.44
log2(1/ϵ) bits per item, or 44% overhead. (2,4)-cuckoo filters with
semi-sorting are more space efficient than Bloom filters when
< 3%.

Number of memory accesses: For Bloom filters with k hash
functions, a positive query must read k bits from the bit array.
For space-optimized Bloom filters that require k=log2(1/ϵ), when
ϵ gets smaller, positive queries must probe more bits and are
likely to have more cache line misses when reading each bit. For
example, k equals 2 when ϵ = 25%, but the value quickly grows
to 7 when ϵ = 1%, which is more commonly seen in practice. A
negative query to a space optimized Bloom filter reads 2 bits on
average before it returns, because half of the bits are set [8]. In
contrast, any query to a cuckoo filter, positive or negative, always
reads a fixed number of buckets, resulting in two cache line
misses.

Static maximum capacity: The maximum number of entries a
cuckoo filter can contain is limited. After reaching the maxi-

memory references lookup

Bits per item Load factor α Positive query Negative query

Space-optimized Bloom filter 1.44 log2(1/ϵ) − log2(1/ϵ) 2

(2,4)-cuckoo filter (log2(α/ϵ)+3)/α 95.5% 2 2

(2,4)-cuckoo filter w/ semi-sort (log2(α/ϵ)+2)/α 95.5% 2 2

Table 1: Space and lookup cost of Bloom filters and two cuckoo filters

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 39

PROGRAMMING
Cuckoo Filter: Better Than Bloom

mum load factor, insertions are likely to fail and the hash table
must expand in order to store more items. In contrast, one can
keep inserting new items into a Bloom filter at the cost of an
increasing false positive rate. To maintain the same target false
positive rate, the Bloom filter must also expand.

Limited duplicate insertion: If the cuckoo filter supports
deletion, it must store multiple copies of the same item. Inserting
the same item kb+1 times will cause the insertion to fail. This
is similar to counting Bloom filters where duplicate insertion
causes counter overflow. In contrast, there is no effect from
inserting identical items multiple times into Bloom filters, or a
non-deletable cuckoo filter.

Evaluation
We implemented a cuckoo filter in approximately 500 lines of
C++ (https://github.com/efficient/cuckoofilter). To evaluate its
space efficiency and lookup performance, we ran micro-bench-
marks on a machine with Intel Xeon processors (L5640@2.27
GHz, 12 MB L3 cache) and 16 GB DRAM.

Load factor: As discussed above, partial-key cuckoo hash-
ing relies on the fingerprint to calculate each item’s alternate
buckets. To show that the hash table still achieves high occu-
pancy even when the hash functions are not fully independent,

we built (2,4)-cuckoo filters using fingerprints of different sizes
and measured the maximum load factor. We varied the finger-
print size from 2 bits to 16 bits, and each filter consists of 225
(32 million) buckets. Keys are inserted to an empty filter until
a single insertion relocates existing fingerprints more than 500
times (our “full” condition); then we stop and measure the mean
and variance of achieved load factor α. As shown in Table 2,
when the fingerprint is smaller than six bits, the table utilization
is low, because the limited number of alternate buckets causes
insertions to fail frequently. Once fingerprints exceed six bits,
α approaches the optimal (i.e., that achieved using two fully
independent hash functions).

Space efficiency: We measured the achieved false positive
rates of Bloom filters and (2,4)-cuckoo filters with and with-
out the semi-sorting optimization. When the Bloom filter uses
13 bits per item, it can achieve its lowest false positive rate of
0.20% with nine hash functions. With 12-bit fingerprints, the
(2,4)-cuckoo filter uses slightly less space (12.53 bits/item), and
its achieved false positive rate is 0.19%. When semi-sorting is
used, a (2,4)-cuckoo filter can encode one more bit for each item
and thus halve the false positive rate to 0.09%, using the same
amount of space (12.57 bits/item).

Lookup Performance: After creating these filters, we also
investigated the lookup performance for both positive and nega-
tive queries. We varied the fraction p of positive queries in the
input workload from p=0% to 100%, shown in Figure 3. Each
filter occupies about 200 MB (much larger than the L3 cache).
The Bloom filter performs well when all queries are negative,
because each lookup can return immediately after fetching the
first “0” bit; however, its performance declines quickly when
more queries are positive, because it incurs additional cache
misses as it reads additional bits as part of the lookup. In con-
trast, a (2,4)-cuckoo filter always fetches two buckets in parallel,
and thus achieves about the same, high performance for 100%
positive queries and 100% negative queries. The performance
drops slightly when p=50% because the CPU’s branch prediction
is least accurate (the probability of matching or not matching is

Figure 2: False positive rate vs. space cost per element. For low false posi-
tive rates (< 3%), cuckoo filters (CF) require fewer bits per element than
the space-optimized Bloom filters (BF). The load factors to calculate space
cost of cuckoo filters are obtained empirically.

Figure 3: Lookup performance for a space-optimized Bloom filter and a
(2,4)-cuckoo filter with a single thread. Each point is the average of 10 runs.

f (bits) mean of α (gap to optimal) variance of α

2 17.53%, (-78.27%) 1.39%

4 67.67%, (-28.13%) 8.06%

6 95.39%, (-0.41%) 0.10%

8 95.62%, (-0.18%) 0.18%

12 95.77%, (-0.03%) 0.11%

16 95.80%, (0.00%) 0.11%

Table 2: Load factor achieved by different f with (2,4)-cuckoo filter. Each
point is the average of 10 runs.

40  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

PROGRAMMING
Cuckoo Filter: Better Than Bloom

exactly 1/2). A (2,4)-cuckoo filter with semi-sorting has a similar
trend, but it is slower due to the extra encoding/decoding over-
head when reading each bucket. In return for the performance
penalty, the semi-sorting version reduces the false positive rate
by half compared to the standard (2,4)-cuckoo filter. However,
the cuckoo filter with semi-sorting still outperforms Bloom
filters when more than 50% queries are positive.

References
[1] B.H. Bloom, “Space/Time Trade-Offs in Hash Coding
with Allowable Errors,” Communications of the ACM, vol. 13,
no. 7 (1970), pp.422-426.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,
and G. Varghese, “Bloom Filters via D-Left Hashing and
Dynamic Bit Reassignment,” in Proceedings of the Allerton
Conference on Communication, Control and Computing,
2006.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese, “An Improved Construction for Counting Bloom
Filters,” 14th Annual European Symposium on Algorithms,
2006, pp. 684-695.

[4] U. Erlingsson, M. Manasse, and F. McSherry, “A Cool and
Practical Alternative to Traditional Hash Tables, Seventh
Workshop on Distributed Data and Structures (WDAS 2006),
CA, USA, pp. 1-6.

[5] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol,”
IEEE/ACM Transactions on Networking, vol. 8, no. 3 (June
2000), pp. 281-293, doi: 10.1109/90.851975.

[6] M. Mitzenmacher and B. Vocking, “The Asymptotics of
Selecting the Shortest of Two, Improved,” Proceedings of the
Annual Allerton Conference on Communication Control and
Computing (1999), vol. 37, pp. 326-327.

[7] R. Pagh and F. Rodler, “Cuckoo Hashing,” Journal of Algo-
rithms, vol. 51, no. 2 (May 2004), pp.122-144.

[8] F. Putze, P. Sanders, and S. Johannes, “Cache-, Hash- and
Space-Efficient Bloom Filters,” Experimental Algorithms
(Springer Berlin / Heidelberg, 2007), pp. 108-121.

USENIX Board of Directors
Communicate directly with the USENIX
Board of Directors by sending email to
board@usenix.org.
P R E S I D E N T
Margo Seltzer, Harvard University
margo@usenix.org
V I C E P R E S I D E N T
John Arrasjid, VMware
johna@usenix.org
S E C R E T A R Y
Carolyn Rowland
carolyn@usenix.org
T R E A S U R E R
Brian Noble, University of Michigan
noble@usenix.org
D I R E C T O R S
David Blank-Edelman, Northeastern
 University
dnb@usenix.org
Sasha Fedorova, Simon Fraser University
sasha@usenix.org
Niels Provos, Google
niels@usenix.org
Dan Wallach, Rice University
dwallach@usenix.org
C O - E X E C U T I V E D I R E C T O R S
Anne Dickison
anne@usenix.org
Casey Henderson
casey@usenix.org

