
6    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

CLOUDSynnefo: A Complete Cloud Stack over Ganeti
V A N G E L I S K O U K I S , C O N S T A N T I N O S V E N E T S A N O P O U L O S ,
A N D N E C T A R I O S K O Z I R I S

Vangelis Koukis is the technical
lead of the ~okeanos project
at the Greek Research and
Technology Network (GRNET).
His research interests include

large-scale computation in the cloud, high-
performance cluster interconnects, and shared
block-level storage. Koukis has a Ph.D. in
Electrical and Computer Engineering from
the National Technical University of Athens.
vkoukis@grnet.gr

Constantinos Venetsanopoulos
is a cloud engineer at the Greek
Research and Technology
Network. His research interests
include distributed storage

in virtualized environments and large-scale
virtualization management. Venetsanopoulos
has a diploma in Electrical and Computer
Engineering from the National Technical
University of Athens. cven@grnet.gr

Nectarios Koziris is a Professor
in the Computing Systems
Laboratory at the National
Technical University of
Athens. His research interests

include parallel architectures, interaction
between compilers, OSes and architectures,
OS virtualization, large-scale computer
and storage systems, cloud infrastructures,
distributed systems and algorithms, and
distributed data management. Koziris has a
Ph.D. in Electrical and Computer Engineering
from the National Technical University of
Athens. nkoziris@cslab.ece.ntua.gr

Synnefo is a complete open source cloud stack that provides Compute,
Network, Image, Volume and Storage services, similar to the ones
offered by AWS. Synnefo manages multiple Ganeti [2] clusters at the

backend for the handling of low-level VM operations. Essentially, it pro-
vides the necessary layer around Ganeti to implement the functionality of
a complete cloud stack. This approach enforces clear separation between
the cluster management layer and the cloud layer, a distinction that is cen-
tral to Synnefo’s design. This separation allows for easier upgrades without
impacting VM stability, improves scalability, and simplifies administration.
To boost third-party compatibility, Synnefo exposes the OpenStack APIs to
users. We have developed two stand-alone clients for its APIs: a rich Web UI
and a command-line client.

In this article, we describe Synnefo’s overall architecture, its interaction with Ganeti, and
the benefits of decoupling the cloud from the cluster layer. We focus on Synnefo’s handling of
files, images, and VM volumes in an integrated way and discuss advantages when choosing
Synnefo to deliver a private or public cloud. We conclude with our experiences from running
a real-world production deployment on Synnefo.

Layers
Before describing Synnefo itself in more detail, we will talk about the five distinct layers we
recognize in building a complete cloud stack, from the lowest level, closest to the machine, to
the highest level, closest to the user:

The VM-hypervisor layer is a single VM as created by the hypervisor. The node layer repre-
sents a number of VMs running on a single physical host. The software on this layer man-
ages the hypervisor on a single physical node and the storage and network visible by the node
and sets them up accordingly for each VM. The cluster layer is responsible for managing a
number of physical nodes, with similar hardware configuration, all managed as a group.
The software on this layer coordinates the addition/removal of physical nodes, allows for
balanced allocation of virtual resources, and handles live VM migration. The cloud layer
manages a number of clusters and also brings the user into the picture. The software on this
layer handles authentication, resource sharing, ACLs, tokens, accounting, and billing. It also
implements one or more APIs and decides how to forward user requests to potentially mul-
tiple clusters underneath. The API layer is not an actual software layer but rather is the API
specification that should be used by the clients of the cloud platform. Finally, at the highest
level, we have the UI layer that speaks to the platform’s APIs.

Building a cloud stack is a difficult engineering problem because it spans many distinct
domains. The task is complicated because it involves two distinct mindsets that meet at the
cloud↔cluster boundary. On one side is traditional cluster management: low-level virtual-
ization and OS concepts, processes, synchronization, locking, scheduling, block storage man-
agement, network switches/routers, and knowledge that there is physical hardware involved,
which fails frequently. On the other side lies the fast-paced world of Web-based development,
Web services, rich UIs, HTTP APIs, REST, JSON, and XML.

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  7

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

These two sides are served by people with different mindsets
and different skill sets. We argue it also is most efficient to be
served by different software, keeping a clear separation between
the cloud and the cluster layers. Synnefo sits at the cloud layer.
We wear a different hat when implementing Synnefo at the cloud
layer than when implementing components at the cluster layer
that integrate it with Ganeti, or when contributing to Ganeti itself.

Overall Architecture
An overview of the Synnefo stack is shown in Figure 1. Synnefo
has three main components:

◆◆ Astakos is the common Identity/Account management service
across Synnefo.

◆◆ Pithos is the File/Object Storage service.

◆◆ Cyclades is the Compute/Network/Image and Volume service.

Table 1 provides an explanation for the names we used.

These components are implemented in Python using the Django
framework. Each service exposes the associated OpenStack
APIs to end users. The service scales out on a number of work-
ers, uses its own private DB to hold cloud-level data, and issues
requests to the cluster layer, as necessary.

Synnefo has a number of smaller components that plug into
Ganeti to integrate it into a Synnefo deployment.

In the following, we describe the functionality of each main
component.

Astakos (Identity)
Astakos is the Identity management component, which provides
a common user base to the rest of Synnefo. Astakos handles user
creation, user groups, resource accounting, quotas, and projects,
and it issues authentication tokens used across the infrastruc-
ture. Astakos supports multiple authentication methods: local
username/password pairs; LDAP/Active Directory; SAML 2.0
(Shibboleth) federated logins; and login with third-party creden-
tials, including Google, Twitter, and LinkedIn. Users can add

Figure 1: An overview of the Synnefo architecture including all layers

Synnefo
Greek for “cloud,” which seemed good for a cloud
platform.

 ~okeanos
Greek for “ocean,” an abundant resource pool for
life on Earth.

Astakos
Greek for “lobster,” a crustacean with big claws
and a hard exoskeleton.

Pithos
Ancient Greek name for storage vessels, e.g., for
oil or grains.

Cyclades The main island group in the Aegean Sea.

Kamaki
Greek for “harpoon”; if VMs are fish in the ocean,
a harpoon may come handy.

Archipelago
Greek for “a cluster of islands,” which seemed
good for a distributed storage system.

Table 1: The story behind the names of Synnefo and its components. Many
of the names follow a sea theme, as Synnefo’s origins are in the ∼okeanos
service.

8    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

multiple login methods to a single account, according to config-
ured policy.

Astakos keeps track of resource usage across Synnefo, enforces
quotas, and implements a common user dashboard. Quota han-
dling is resource-type agnostic: resources (e.g., VMs, public IPs,
GBs of storage, or disk space) are defined by each Synnefo com-
ponent independently, then imported into Astakos for account-
ing and presentation.

Astakos runs at the cloud layer and exposes the OpenStack Key-
stone API for authentication, along with the Synnefo Account
API for quota, user group, and project management.

Pithos (Object/File Storage)
Pithos is the Object/File Storage component of Synnefo. Users
upload files on Pithos using either the Web UI, the command-
line client, or native syncing clients. Pithos is a thin layer
mapping user-files to content-addressable blocks that are then
stored on a storage backend. Files are split in blocks of fixed size,
which are hashed independently to create a unique identifier
for each block, so each file is represented by a sequence of block
names (a hashmap). This way, Pithos provides deduplication of
file data; blocks shared among files are only stored once. The
current implementation uses 4 MB blocks hashed with SHA256.
Content-based addressing also enables efficient two-way file
syncing that can be used by all Pithos clients (e.g., the “kamaki”
command-line client or the native Windows/Mac OS clients).
Whenever someone wants to upload an updated version of a
file, the client hashes all blocks of the file and then requests
the server to create a new version for this block sequence. The
server will return an error reply with a list of the missing blocks.
The client may then upload each block one by one, and retry file
creation. Similarly, whenever a file has been changed on the
server, the client can ask for its list of blocks and only download
the modified ones.

Pithos runs at the cloud layer and exposes the OpenStack Object
Storage API to the outside world, with custom extensions for
syncing. Any client speaking to OpenStack Swift can also be
used to store objects in a Pithos deployment. The process of map-
ping user files to hashed objects is independent from the actual
storage backend, which is selectable by the administrator using
pluggable drivers. Currently, Pithos has drivers for two storage
backends: files on a shared file system (e.g., NFS, Lustre, or GPFS)
or objects on a Ceph/RADOS [3] cluster. Whatever the storage
backend, it is responsible for storing objects reliably, without any
connection to the cloud APIs or to the hashing operations.

Cyclades (Compute/Network/Image/Volume)
Cyclades is the Synnefo component that implements the Com-
pute, Network, Image, and Volume services. Cyclades exposes
the associated OpenStack REST APIs: OpenStack Compute,

Network, Glance, and, soon, Cinder. Cyclades is the part that
manages multiple Ganeti clusters at the backend. Cyclades
issues commands to a Ganeti cluster using Ganeti’s Remote
API (RAPI). The administrator can expand the infrastructure
dynamically by adding new Ganeti clusters to reach datacenter
scale. Cyclades knows nothing about low-level VM management
operations, e.g., handling of VM creations, migrations among
physical nodes, and handling of node downtimes; the design
and implementation of the end-user API is orthogonal to VM
handling at the backend.

We strive to keep the implementation of Cyclades independent
of Ganeti code. We write around Ganeti, and add no Synnefo-
specific code inside it. Whenever the mechanism inside Ganeti
does not suffice, we extend it independently from Synnefo, and
contribute patches to the official upstream for review and even-
tual inclusion in the project.

There are two distinct, asynchronous paths in the interac-
tion between Synnefo and Ganeti. The effect path is activated
in response to a user request; Cyclades issues VM control
commands to Ganeti over RAPI. The update path is triggered
whenever the state of a VM changes, due to Synnefo- or admin-
istrator-initiated actions happening at the Ganeti level. In the
update path, we exploit Ganeti’s hook mechanism to produce
notifications to the rest of the Synnefo infrastructure over a
message queue.

Tying It All Together
Synnefo’s greatest strength lies in the integrated way it handles
its three basic storage entities: Files, named pieces of user data;
Images, the static templates from which live VM instances are
initialized; and Volumes, the block storage devices, the virtual
disks on which live VMs operate. In this section, we describe the
duality between Files and Images (an Image is a file on Pithos that
has specific metadata), and the duality between Images and Vol-
umes (a Volume is a live VM disk that originates from an Image).

Images as Files on Pithos
Synnefo uses Pithos to store both system and user-provided
Images in the same way it stores all other files. Because Images
of the same OS share many identical blocks, deduplication comes
in handy. Assume a user has created a “golden” VM Image on her
own computer, and has customized it to her liking. When she is
ready to deploy it, she uploads it as a file to Pithos, registers it as
an Image with Cyclades, then spawns new VMs from it. When
she needs to update her Image, she just repeats the process.
Every upload uses the Pithos syncing protocol, which means
the client will only need to upload the blocks changed since
the previous time. Pithos features a file-sharing mechanism,
which applies to Image files too: users can attach custom ACLs
to them, share them with other users or closed groups, or make
them public.

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  9

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

Image Deployment Inside Ganeti
To support the secure deployment of user-provided, untrusted
images with Ganeti, we have developed a Ganeti OS definition
called snf-image. Image deployment entails two steps: (1) Vol-
ume initialization—the Image is fetched from backend storage
and copied to the block device of the newly created instance,
and (2) optional Image customization. Customization includes
resizing the root file system, changing passwords for root or
other users, file injection (e.g., for SSH keys), and setting a cus-
tom hostname. All Image customization is done inside a helper
VM, in isolation from the physical host, enhancing robustness
and security.

For Volume initialization, snf-image can fetch Image data from
a number of storage backends. Volume initialization can use a
shared file system (e.g., NFS), perform an HTTP or FTP down-
load, or, in the Synnefo case, contact a Pithos storage backend
directly. snf-image can deploy most major Linux distributions
(Debian, Ubuntu, CentOS, Fedora, Arch, openSUSE, Gentoo),
Windows Server 2008R2 and 2012, as well as FreeBSD.

Archipelago: Integrated Handling of Volumes and
Images
Synnefo supports all different storage options (“disk templates”)
offered by Ganeti to back the virtual disks used by VMs (“Vol-
umes”). Each storage backend has different redundancy and per-
formance characteristics; Synnefo brings the choice of storage
backend all the way up to the user, who can select based on the
intended usage of the VM.

The Ganeti-provided disk templates are good options for long-
running, persistent VMs (e.g., a departmental file server run-
ning on the cloud); however, they are not a good fit when the
usage scenario needs thin VM provisioning: for example, when
the user wants to spin up a large number of short-lived, identical
VMs (e.g., from a custom golden Image), run a parallel program
for a few hours or days, then shut them down. In this case, the
time and space overhead of copying Image data to all Volumes is
significant.

Archipelago is a block storage layer developed with Synnefo,
which integrates VM Images with Volumes. Archipelago enables
thin creation of Volumes as copy-on-write clones of Images, with
zero data movement, as well as making snapshots of a Volume
at a later time to create VM Images. Archipelago plugs into
Ganeti and acts as one of its disk templates. Cyclades then uses
Archipelago for fast provisioning of VMs from Images stored on
Pithos, with minimal overhead. To implement clones and snap-
shots, Archipelago keeps track of VM block allocation in maps,
initialized from Pithos files (hashmaps). Maps are stored along
with actual data blocks. Archipelago can use various storage
backends to store data, similarly to Pithos. Archipelago has plug-
gable drivers, currently for file system-backed block storage, or
Ceph/RADOS, so clone and snapshot functionality is indepen-
dent of the underlying backend. Figure 2 shows how Archipelago
is integrated into a Synnefo deployment. In such a scenario,
Archipelago shares its storage backend with Pithos. This enables
a workflow as follows: a user uploads the contents of an Image as
a file on Pithos, with efficient syncing, registers it as an Image

Figure 2: Integrated storage for Images and Volumes with Archipelago

10    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

CLOUD
Synnefo: A Complete Cloud Stack over Ganeti

with Cyclades, then spawns a large number of thinly provisioned
VMs from this Image. Because Archipelago shares the storage
backend with Pithos, it creates one new volume per VM without
copying the data. The actual 4 MB blocks of data that make up
the Image remain as blocks in the storage backend, after being
uploaded to Pithos by the user. Archipelago will create one map
per VM, with all maps referencing the original Pithos blocks for
the Image. Whenever a VM modifies data on its volume, Archi-
pelago allocates a new block for it and updates the map for its
volume accordingly.

Synnefo Advantages
The decoupled design of Synnefo brings the following
advantages:

◆◆ Synnefo combines the stability of Ganeti with the self-service
provisioning of clouds. This allows it to run workloads that do
not fit the standard model of a volatile cloud, such as long-
running servers in fault-tolerant, persistent VMs. Archipelago-
backed storage covers the need for fast provisioning of short-
lived, computationally intensive worker VMs.

◆◆ In a Synnefo deployment, Synnefo and Ganeti follow distinct
upgrade schedules, with software upgrades rolled out gradually,
without affecting all of the stack at once.

◆◆ The Ganeti clusters are self-contained. The administrator has
complete control (e.g., to add/remove physical nodes or migrate
VMs to different nodes via the Ganeti side path) without Syn-
nefo knowing about it. Synnefo is automatically notified and
updates user-visible state whenever necessary. For example, a
VM migration happening at Ganeti level is transparent to Syn-
nefo, whereas a VM shutdown by the admin will propagate up
to the user.

◆◆ The system scales dynamically and linearly by adding new
Ganeti clusters into an existing installation. Heterogeneity
across clusters allows Synnefo to provide services with differ-
ent characteristics and levels of QoS (e.g., virtual-to-physical
CPU ratio).

◆◆ Two-level allocation policy for VMs with different criteria:
at the cloud layer, Synnefo selects a Ganeti cluster according
to high-level criteria (e.g., QoS); at the cluster layer, Ganeti
selects a physical node based on lower-level criteria (e.g., free
RAM on node).

◆◆ There is no single database housing all VM configuration data.
Low-level state is handled separately in each Ganeti cluster.
Physical nodes have no access to the Cyclades database at the
cloud layer. This minimizes the possible impact of a hypervisor
breakout and simplifies hardening of DB security.

◆◆ Out–of-the-box integration with different storage backend
technologies, including File, LVM, DRBD, NAS, or Archipelago
on commodity hardware.

Running in Production
Synnefo has been running in production since 2011, powering
GRNET’s ~okeanos [1] public cloud service. Synnefo’s develop-
ment team has grown to more than 15 people in the past three
years. As of this writing, ~okeanos runs more than 5,000 active
VMs, for more than 3,500 users. Users have launched more than
100,000 VMs and more than 20,000 virtual networks.

Using Synnefo in production has enabled:

◆◆ Rolling software and hardware upgrades across all nodes. We
have done numerous hardware and software upgrades (kernel,
Ganeti, Synnefo), many requiring physical node reboots, with-
out user-visible VM interruption.

◆◆ Moving the whole service to a different datacenter, with cross-
datacenter live VM migrations, from Intel to AMD machines,
without the users noticing.

◆◆ On-the-fly syncing of NFS-backed Pithos blocks to RADOS-
backed storage, and integration with Archipelago for thin VM
provisioning.

◆◆ Scaling from a few physical hosts to multiple racks with dy-
namic addition of Ganeti backends.

◆◆ Overcoming limitations of the networking hardware regarding
number of VLANs. Ganeti provides for pluggable networking
scripts, which we exploit to run thousands of virtual LANs over a
single physical VLAN with MAC-level filtering, in a custom con-
figuration. We have also tested VXLAN-based network encapsu-
lation, again with no code modifications to Ganeti or Synnefo.

◆◆ Preserving the ability to live migrate while upgrading across in-
compatible KVM versions, by maintaining the virtual hardware
configuration independently.

Synnefo is open source. Source code, distribution packages,
documentation, many screenshots and videos, as well as a test
deployment open to all can be found at http://www.synnefo.org.

References
[1] Vangelis Koukis, Constantinos Venetsanopoulos, and
Nectarios Koziris, “~okeanos: Building a Cloud, Cluster by
Cluster,” IEEE Internet Computing, vol. 17, no. 13, May-June
2013, pp. 67-71.

[2] Guido Trotter and Tom Limoncelli, “Ganeti: Cluster Vir-
tualization Manager,” USENIX ;login:, vol. 38, no. 3, 2013.

[3] Sage A. Weil, Andrew W. Leung, Scott A. Brandt, and
Carlos Maltzahn, “RADOS: A Scalable, Reliable Storage
Service for Petabyte-Scale Storage Clusters,” Proceedings
of the 2nd International Workshop on Petascale Data Stor-
age, PDSW ’07, held in conjunction with Supercomputing ’07
(ACM, 2007), pp. 35-44.

