:login: logout

EXCLUSIVE ELECTRONIC EDITION

2 Mobile Computing Research is a Hornet’s Nest
of Deception and Chicanery
James Mickens

5 Monitor the Monitors
Selena Deckelmann

7 Setting Up a Vagrant Workflow
Matt Simmons

JULY 2013

é? usenix
S THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

EDITOR
Rik Farrow
rik@usenix.org

MANAGING EDITOR
Rikki Endsley
rikki@usenix.org

PRODUCTION
Arnold Gatilao
Casey Henderson
Michele Nelson

USENIX ASSOCIATION
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738
WWW.USENiX.org

©2013 USENIX Association

USENIX is a registered trademark of the USENIX
Association. Many of the designations used by manu-
facturers and sellers to distinguish their products are
claimed as trademarks. USENIX acknowledges all trade-
marks herein. Where those designations appear in this
publication and USENIX is aware of a trademark claim,
the designations have been printed in caps or initial caps.

Mobile Computing Research Is a Hornet’s Nest
of Deception and Chicanery

JAMES MICKENS

James Mickens is a researcher
in the Distributed Systems
group at Microsoft's Redmond
lab. His current research

focuses on web applications,

with an emphasis on the
design of JavaScript frameworks that allow
developers to diagnose and fix bugs in widely
deployed web applications. James also works
on fast, scalable storage systems for data-
centers. James received his PhD in computer
science from the University of Michigan, and
a bachelor's degree in computer science from

Georgia Tech. mickens@microsoft.com

;login: logout | JULY 2013 | WWW.USENIX.ORG

obile computing researchers are a special kind of menace. They

don’t smuggle rockets to Hezbollah, or clone baby seals and then

make them work in sweatshops for pennies a day. That’s not the
problem with mobile computing people. The problem with mobile computing
people is that they have no shame. They write research papers with titles like
“Crowdsourced Geolocation-based Energy Profiling for Mobile Devices,” as
if the most urgent deficiency of smartphones is an insufficient composition
of buzzwords. The real problem with mobile devices is that they are composed
of Satan. They crash all of the time, ignore our basic commands, and spend
most of their time sullen, quiet, and confused, draining their batteries and
converting the energy into waste heat and thwarted dreams. Smartphones
and tablets have essentially become the new printers: things that do not work,
and are not expected to work, and whose primary purpose is to inspire gothic
conversations about the ultimate futility of the human condition. People buy
mobile devices for the same reason that goldfish swim in their tiny bowls: it’s
something to do while we wait for death. When researchers talk about mobile
computers, they use visionary, exciting terms like “fast”, “scalable”, and “this
solution will definitely work in practice.” When real people talk about mobile
computers, they sound like they’re describing a scene from the Dust Bowl. It’s
all ellipses and gentle, forlorn shaking of the head. “I tried to load the app...I
don’t know what went wrong..I'M SO TIRED AND DUSTY AND BOWLED.”
Let me describe just a few of the problems with mobile devices:

Mobile browsers: When I use a mobile browser to load a web page, I literally have no
expectation that anything will ever happen. A successful page load is so unlikely, so
unimaginable, that mobile browsers effectively exist outside of causality—the browser is
completely divorced from all action verbs, and can only be associated with sad, falling-tone
sentences like “I had to give up after twenty seconds.” The only reason that I use mobile
browsers is that I hate myself and I want to be attritioned into unconsciousness by the
desperate, spastic gasps of my browser as it struggles to download the 87 MB of Flash and
JavaScript that are contained in any website made after the Civil War. Of course, some
web pages are “mobile-enabled,” meaning that they only contain 63 M B of things that I
don’t care about, instead of 87 M B of things I don’t care about. To discover whether a page
has a “fast-loading” mobile version, you can try to load the regular version, and then see if
you get stuck in a hurricane of HTTP redirects, redirects whose durations have been care-
fully selected to make the load time of the mobile page completely equivalent to the load
time of the standard, redirect-free version. If the Buddha intervenes and somehow coerces

PAGE 2

;login: logout

Mobile Computing Research Is a Hornet’s Nest of Deception and Chicanery

the mobile version of the page to load, you will be rewarded
with a “phone-optimized” page that contains 1.5 visual ele-
ments (note that the most boring thing in the world has 3 visual
elements). The vast majority of your mobile page will be adver-
tisements for a newly discovered herb from South America that
causes amazing weight loss. The amazingness of the weight
loss will be demonstrated by a three-frame animation that
depicts a fat person wearing a wife beater, a marginally less

fat person wearing a wife beater, and a skinny person who, for
inexplicable reasons, is still wearing a wife beater, even though
he is now free to date supermodels, wear polar bear jackets, and
do all of the other exciting things that skinny people presum-
ably do when they’re pumped full of South American mystery
herbs. Importantly, the advertisements on your phone will
position themselves in strategically disrespectful places, care-
fully obscuring the 0.25 visual elements that you actually want
to see. When you scroll the page, the ads will engage in a frantic
dance to reposition themselves in a maximally infuriating way.
You will eventually give up and close the browser, having spent
45 minutes to unsuccessfully load a web page about dogs that
look like cats that look like other, different cats.

Touchscreens: When touchscreens work, they're amazing;
however, touchscreens are the only commodities which
depreciate faster than automobiles. As soon as you unwrap
your phone or tablet, the touchscreen starts to die. Make no
mistake, your initial touchscreen romance will be lovely and
full. Hark!—as you effortlessly move neon blobs of information
like a character from “Tron”! Behold!—as you zoom into and
out of a dynamically resizable thing that contains additional-
but-only-partially-resizable things! Such experiences
represent the springtime of your love, and the initial weeks of
your touchscreen romance will be like a young Led Zeppelin,
intense and grandiose and punctuated by extended guitar
solos. However, at some point, you will drop your phone or
your tablet, and this will mark the beginning of the end.
When you drop a touchscreen, you initiate a complex series
of degenerative processes that corrupt the touchscreen and
turn its will against you like a pet lizard who has learned that
dinosaurs were real BUT IT’S JUST A STATE OF MIND.
Note that, when I say that you will “drop” your touchscreen,

I do not mean “drop” in the layperson sense of “to release

from a non-trivial height onto a hard surface.” I mean “drop”
in the sense of “to place your touchscreen on any surface that
isn’t composed of angel feathers and the dreams of earnest
schoolchildren.” Phones and tablets apparently require Planck-
scale mechanical alignments, such that merely looking at the
touchscreen introduces fundamental, quantum dynamical
changes in the touchscreen’s dilithium crystals. Thus, if you
place your touchscreen on anything, ever, you have made a
severe and irreversible life mistake. Slowly but surely, your
touchscreen will develop a series of tics and glitches, behaviors

;login: logout | JULY 2013 | WWW.USENIX.ORG

that you will initially explain away as “technology is quirky,”
but that you will quickly begin to describe using extraordinary
and significant profanities that are normally employed by
Marines and people who work with radioactive waste. On
your touchscreen, your swipes will become pinches, and
your pinches will become scrolls, and each one of your scrolls
will become a complex thing never before seen on this earth,
aleviathan meta-touch event of such breadth and complexity
that your phone can only respond like Carrie White at the
prom. So, your phone just starts doing stuff, all the stuff that it
knows how to do, and it’s just going nuts, and your apps are
closing and opening and talking to the cloud and configuring
themselves in unnatural ways, and your phone starts vibrating
and rumbling with its little rumble pack, and it will gently

sing like a tiny hummingbird of hate, and you’ll look at the
touchscreen, and you'll see that things are happening, my god,
there are so many happenings, and you’ll try to flip the phone
over and take out the battery, because now you just want to kill
it and move to Kansas and start over, but the back panel of the
phone is attached by a molecule-sized screw that requires a
special type of screwdriver that only Merlin possesses, and
Merlin isn’t nearby, and your phone is still rumbling, and by this
point, you can understand the rumble, it’s a twin language that
you and your phone invented, and the phone is rumbling, and
it’s saying that it’s far from done, that it has so much more that
it wants to do, that there are so many of your frenemies that it
wants to “accidentally” call and then leave you to deal with the
social ramifications, and your phone, it buzzes, and you think
that you see it smiling, and you begin to realize that land-line
telephones were actually a pretty good idea.

Call quality: Interestingly, a mobile phone should be able

to make phone calls while it moves through time and space.

I derived this provocative concept from basic notions of
adjectives and nouns. For example, if I am a gregarious jellyfish
I praise my friends for their wardrobe choices (gregarious)
while I repeatedly stab them with my poisonous tentacles
(jellyfish). I am a gregarious jellyfish. That is my way. I may
be misunderstood by polite society, but as a gregarious jellyfish,
my dramatic tensions respect the standard semantics for
adjectives and nouns. Similarly, a mobile phone should be
able to PHONE PEOPLE while being MOBILE. However, I
have never had a successful conversation on a mobile phone.
Whenever I talk to people on a mobile phone, they always sound
distant and/or creepy, like they’re trapped in an echo-filled
cave, or a windy cave, or a cave that makes people sound like
pedophiles. These are not good caves to be in, to the extent that
it’s ever good to be in a cave. Nobody takes their honeymoon
at Persistently Distracting Echo Cave. Nobody has their Bat
Mitzvah at Windy Cave’s 80% Packet Loss Ballroom. You may,
in fact, find online travel deals for Pedo-Cave, but these are all
traps that have been set by “T'o Catch A Predator.” My point

PAGE 3

;login: logout

Mobile Computing Research Is a Hornet’s Nest of Deception and Chicanery

is that mobile phones are not phones. They are just pocket-
sized things that are more expensive than the vast majority of
other pocket-sized things. In a rational world, the Maslow’s
Hierarchy of Needs for Mobile Phones would look like this:

Make phone calls

However, in today’s world, the hierarchy looks like this:

Maybe make
phone calls LOL

Custom ringtones because
PEOPLE WILL APPARENTLY BUY
CUSTOM RINGTONES

Integration with social media
sites that | hate and which connect

me to people that | hate

Rounded translucent GUI elements so
that | can pretend that I live in a world

made of floating ice blocks with text inside

A big app store so that | can play worthless games
instead of reading history books and improving my life

OMG IT'S A TOUCHSCREEN THAT’S HUGE BUT STILL
TINY AND SCRATCHABLE

This is why, when you try to talk to someone on a mobile
phone, you are thrown into a frantic world of on-the-fly lossy
decompression, like Nicholas Cage in that movie about Navajo
code talkers (the only movie that managed to simultaneously
offend Native Americans, cryptographers, and people who are
neither Native Americans nor cryptographically inclined).

;login: logout | JULY 2013 | WWW.USENIX.ORG

Conclusion

In the minds of mobile computing researchers, humanity is
nearing a final, glorious stage of Darwinian evolution, in which
mankind and smartphones emerge from a shared chrysalis and
transform into shapeless, omnipotent joy clouds of excellence
and victory, unconstrained by conventional morality or finite
battery life. In reality, you could go to the Middle Ages, find a
random person, and take whatever is in his left pocket, and
you would have something that is more useful than a modern
mobile device (although it may be covered with Bubonic plague
or antiquated notions about the stoning of random villagers with
respect to the actual size of the witch population). When you
purchase a mobile device, you are basically saying, “I endorse
the operational inefficiency of the modern bourgeoisie lifestyle,
even though I could find a rock and tie a coat hanger around

it and have a better chance of having a phone conversation

that doesn’t sound like two monsters arguing about German
poetry.” So, I encourage you to throw your tablets and your
mobile phones into a fire, and then hide from the angry
monsters who no longer have a way to discuss the work of
Klaus von Beckenbauer, the acclaimed poet who wrote

“The Unsurprising Laments of the Gregarious Jellyfish,”
“Seriously, Todd, You've Got To Stop Stabbing People If You
Want To Get Married,” and “Yes, Jellyfish Have Names and My
Name is Todd.”

PAGE 4

Monitor the Monitors

SELENA DECKELMANN

Selena Deckelmann is a major
contributor to PostgreSQL and
a data architect at Mozilla.
She's been involved with free

and open source software
,' "N since 1995 and began running
conferences for PostgreSQL in 2007. In 2012,
she founded PylLadiesPDX, a portland chapter
of PyLadies. Deckelmann founded Open Source
Bridge and Postgres Open, and she speaks
internationally about open source, databases,
and community. She is an advisor to the
Ada Initiative, an organization dedicated to
increasing the participation of women in open
source and technology communities. You can
find her on twitter (@selenamarie) and on her

blog at chesnok.com. selena@chesnok.com

;login: logout | JULY 2013 | WWW.USENIX.ORG

colleague asked: What tools do people use for monitoring the moni-

tors? His question was inspired by “Dead Man’s Snitch,” a web-based

tool that detects and reports out when a regularly scheduled job
hasn’t run. This got me thinking about all the kinds of systems teams set up
to detect silent failures. Most involve turning silence into noise.

When asked, friends had quite a few different names for these strategies: meta-monitoring,
the “everything’s ok” alarm, a “canary in the mine,” Dead Man’s Switch, heartbeat, watch-
dog, high availability response, and the entertainingly painful OOBETET (out-of-band-
end-to-end test).

You could divide that list up in a few different ways:

Automated vs. manual execution
Automated vs. manual response

*
*
¢ Destructive vs. non-destructive response
*

Monitoring vs. monitoring of notification services
Classifying the strategies seems fairly simple. The Dead Man’s Switch is automated and

contains a destructive response, at least in the movies. An out-of-band-end-to-end test is
often manual both in execution and response, and non-destructive.

Definitions become a bit fuzzier, however, when we consider “monitoring vs. monitoring of
notification services”. For example, how do you ensure (within reason) that text message
alerts actually made it to the staff who can fix a problem?

This kind of testing seems to fall under “out of band” checks. These are verification
routines we don’t include in our primary monitoring systems, just in case the primary
systems aren’t available.

Teams have lots of informal—and sometimes formal—ways of managing these issues.
For example, when on-call switches over, the phone company may send an initial alert text
message to the new shift’s phone number.

In my first job out of college, our team sent out a test alarm at 9 a.m. every day to the on-
call team member, signaling that the paging service was still working. If you were on call
and didn’t receive the page, you knew to contact your manager to get things fixed as soon
as possible.

Critically, this kind of verification system is not fully automated. Instead, the system is
managed by training people to notice a simple signal (in this case, a disruption in a well-
known routine) and supplying instructions for exactly how to respond.

Much of the work involved in keeping formal out-of-band checks working and useful is in
documentation and training. When systems are designed for human intervention, there’s

PAGE 5

;login: logout

Monitor the Monitors

a temptation to not document the process fully because you
know a person must puzzle their way through responding to
the alarm anyway.

But there’s significant value in documenting even our informal
process. Training is much easier when you've got a document
to work from, and you can have some degree of assurance that
team members will run through steps to fix problems the same
way every time. If something changes, you know where to
document the change - in the written documentation. You may
find that the check and even the fix can be automated. And,
staged failures to test the procedure is a lot easier to manage
when you have a fix procedure to test.

So, take a few minutes and have a look at your team’s out-of-
band monitoring. What are the things that might fail silently?
Can you turn that silent failure into noise? How will your team
detect and respond? And then write it down!

;login: logout | JuLY 2013 | WWW.USENIX.ORG

PAGE 6

Setting Up a Vagrant Workflow

MATT SIMMONS

PY Matt Simmons is a 12+

year system administrator
who works at the College of
Computer and Information
Science at Northeastern University in Boston.
He blogs at http://www.standalone-sysadmin.
com/ and can be reached via @standaloneSA
on Twitter. standalone.sysadmin@gmail.com

References
[1] Vagrant: http://www.vagrantup.
com/

[2] VagrantUp.com: http://www.
vagrantup.com/

[3] Vagrant documentation: http://
docs.vagrantup.com/v2/

;login: logout | JULY 2013 | WWW.USENIX.ORG

ire. The wheel. The Internet. Microwave cheese. These are things that

we, as a species, have created and really matter to us in our daily lives,

and that have appreciably made the world a better place. I want to cast
my vote to add Vagrant [1] to that list.

Remember the bad old days, when you would write configuration management code, com-
mit it to a repo, check it out in the testing environment, reboot a machine, and then a few
minutes later figure out that you left out a semicolon, so you'd have to do it all over again?
That whole workflow is so 2011.

Not that long ago, I was listening to some trainers talking about offering a Vagrant Box to
people attending their classes at conferences. Being the naturally inquisitive sort of person
that I am, I rudely interrupted their conversation to ask what they were talking about. I
learned that Vagrant was apparently a “thing” that made “VMs” from “images”.

Now, I'm more than passingly familiar with the whole “virtualization” deal, so I felt like
T had a decent grasp of things from that description. I mean, I didn’t think Vagrant was
anything revolutionary, but I could kind of see where it was going. I thought Vagrant was
something maybe like VMware’s marketplace or maybe a nicer way for people to distrib-
ute their images or something. In a sense, I was kind of right, but in reality, I was way off.
Vagrant is so much cooler than that.

AsIfound out later, Vagrant is an abstraction layer above virtualization solutions, typi-
cally things such as VirtualBox or VMware Fusion. These virtualization products, meant
to be desktop solutions, have rather robust back-end capabilities and offer headless
solutions that are of absolutely no use to you as a desktop, and they default to a console
display if you use their interfaces, which is annoying if you want to use them as a server
environment.

Vagrant is a way of automating and controlling the creation and destruction of those
machines, but above and beyond that, Vagrant images (or boxes, in the lingo) have certain
software installed, configured, and ready to be put to use by you for all of your nefarious (or
not) purposes.

Here’s how my current workflow looks. Suppose I've got an Ubuntu machine on which I
want to play with Vagrant. I'll install it like this:

$ sudo install vagrant

By default, Vagrant doesn’t come with any boxes to make new machines from, so lets add
one:

$ vagrant box add precise32 http://files.vagrantup.com/precise32.box

PAGE 7

;login: logout

Setting Up a Vagrant Workflow

This adds a box named precise32, and the source image...err,
box...is downloaded from the given URL. We're really close now:

$ vagrant init precise3?2

This creates a configuration file that Vagrant will use to build
the machine. The defaults will give us a nice clear template to
work with. Now, we’re ready:

$ vagrant up
Ta-Da! You now have a machine. You can connect to it like this:
$ vagrant ssh

It’s up and running, with whatever image you wanted. Want to
shut it down? Exit from the ssh session just like you normally
would, then type:

$ vagrant destroy
Poof. Gone!

I realize that this is a simplistic example of what’s possible,
but look through the Vagrantfile and you’ll see an entirely new
world open before your eyes. You can create a Puppet or Chef
configuration and have it run automatically on boot, or run an
initialization shell script, or even create multiple VMs at once
and build an entire infrastructure in miniature, then destroy it
with less effort than it takes to kick down a sandcastle.

To check out Vagrant, I recommend working through the
exercises at VagrantUp.com [2] and then read the documenta-
tion [3]. Vagrant has completely changed the way that I test my
Puppet code, and once you grok it, I'm certain that it’ll change
yours, too. Feel free to write me at standalone.sysadmin@
gmail.com and let me know what you think ofit.

;login: logout | JULY 2013 | WWW.USENIX.ORG

PAGE 8

