
E X C L U S I V E  E L E C T R O N I C  E D I T I O N    J A N U A R Y  2 0 1 4



E d i t o r
Rik Farrow 
rik@usenix.org

M a n a g i n g  E d i t o r
Rikki Endsley 
rikki@usenix.org

P r o d u c t i o n
Arnold Gatilao
Casey Henderson
Michele Nelson

u S E n i X  a S S o c i at i o n
2560 Ninth Street, Suite 215,  
Berkeley, California 94710 
Phone: (510) 528-8649 
FAX: (510) 548-5738 
www.usenix.org

©2014 USENIX Association 
USENIX is a registered trademark of the USENIX 
Association. Many of the designations used by manu-
facturers and sellers to distinguish their products are 
claimed as trademarks. USENIX acknowledges all trade-
marks herein. Where those designations appear in this 
publication and USENIX is aware of a trademark claim,  
the designations have been printed in caps or initial caps.

2  /var/log/manager: Message Not Received 
Andrew Seely

5  Code Review for System Administrators 
Elizabeth Krumbach Joseph

8  This World of Ours 
James Mickens

E X c L u S i V E  E L E c t r o n i c  E d i t i o n    J a n u a r Y  2 0 1 4

mailto:rik@usenix.org
mailto:rikki@usenix.org
www.usenix.org


 | JANUARY 2014 | WWW.UseNix.oRg PAge 2

/var/log/manager
Message Not Received
A n d r e w  S e e l y

Communicating about technology can be a greater challenge than 
the actual technology itself, especially when people from different 
academic and professional backgrounds need to find common under-

standing. We sometimes miss that when communication between highly 
technical people fails, the systems they support can pay the price with poor 
performance and loss of availability. Understanding communication break-
downs between team members and taking action to ensure that systems are 
effectively maintained, operated, and repaired is the manager’s job. When the 
manager fails to act to repair fractured communications between team mem-
bers, the path to a brittle and failure-prone production environment is short.

One of my employees, a BMC Remedy developer on the engineering team, went to the 
change manager requesting an emergency reboot of the middle tier server during peak 
hours because something “wasn’t right.” We knew something wasn’t right; performance 
was off and there appeared to be some sort of intermittent freeze-up of a subsystem on the 
server that was causing users to get kicked out every few minutes. The change manager 
asked a reasonable question: How do you know that a reboot will fix it? The developer was 
sure a reboot would work, but her explanation started out talking about the subsystem and 
ended up with “it’s broke anyway” and “you wouldn’t understand.” The change manager 
sidestepped and sent her to the operations manager to get higher approval. The operations 
manager heard the explanation and interpreted it as a smoke screen for the fact that the 
developer didn’t have any idea what the problem was and was only guessing. 

Guessing. In production. At peak. Emergency reboot. Denied.

Communicating Means Really Listening
The developer came to me, frustrated and flustered. “Why don’t they understand?” By this 
time, at least half a dozen people in the technical and management operations teams had 
different versions of the story, and all were able to agree on one point: Although there was 
some sort of problem, the application owner didn’t understand it.

The developer and I talked for a bit about how no one understands and no one trusts and 
how the organization was “broken.” After she calmed down somewhat, I asked her to 
describe the current problem and what she felt was the cause. I’m a senior manager in our 
organization, but I’m also a long-time system administrator with a strong computer sci-
ence background, and I understand how systems interact and how computer architectures 
work. After asking a few more probing questions—what are the different subsystems in the 
server, what services do they provide each other and external servers, what type of data is 
flowing through the system—what the problem likely was became clear. The  subsystems 
used the local loopback network interface to communicate internally, but a process 
had a stale socket opened on the loopback that was preventing successful inter-process 

Andy seely is the manager 
of an iT engineering division, 
customer-site Chief engineer, 
and a computer science 
instructor for the University of 

Maryland University College. His wife Heather 
is his init process and his sons Marek’s and ivo 
are always on the run queue.  
andy@yankeetown.com.



 | JANUARY 2014 | WWW.UseNix.oRg PAge 3

Message Not Received

 communication (IPC). The only way to clear the stale socket 
cleanly would be to reboot the operating system.

“That’s what I’ve been saying all along,” the developer said.

We went back to my counterpart in operations together 
and explained the stale socket and IPC problem and how it 
was causing intermittent failures of the user interface. The 
change manager asked, “Why didn’t you tell us that the first 
time?” The emergency reboot during production peak was 
approved, and ten minutes later the service was performing 
within normal parameters.

Communication as a Function of the Manager
Ask anyone in an organization and they’ll tell you how important 
good communication is. Some organizations recognize the need 
for good communication, and have lots and lots of meetings, 
to varying effect. Others have a strong culture of communica-
tion, and as a result have fewer meetings. Ensuring that there is 
ample opportunity for all types of communication—when every-
one needs to know something top-down, when everyone needs to 
come to consensus, and when someone needs to move informa-
tion from one brain to another—is the manager’s job. Sometimes 
the manager’s job is to communicate directly, and other times 
the manager must facilitate communication between others. 
The important skill for the manager is to know the difference.

In the case of the misunderstood developer, my job essentially  
was to interpret a highly technical subject matter expert’s 
explanation and translate it into non-technical manager-speak. 
By taking the easy approach of telling the developer to come 
back later with a coherent explanation, or asking her to send a 
junior developer whom we could “understand better,” I would 
undermine and demoralize an incredibly strong technical 
team member who just had trouble being understood, and that 
approach wouldn’t help solve the problem faster. 

Even though every job posting we write includes words such 
as “must be an effective communicator,” we don’t test for 
that effectively beyond simply conducting an interview. We 
shouldn’t casually dismiss technical excellence because it is 
obscured by verbal communications that aren’t exactly linear. 
We should stand up to the management challenge of facilitat-
ing communication and set conditions for the success of the 
employee and of the technical mission. This process starts 
with trust and is propelled by patience, and it takes a lot of the 
manager’s time and focus. Over time, people get better at trust-
ing each other and understanding each other’s intent when the 
words aren’t obvious, but building a culture of communica-
tion is done one employee at a time. This effort scales linearly. 
There’s no way to do it faster, but improving communication is 
part of the manager’s job.

Key ideas for managers of technical teams:

◆◆ Recognize that technical prowess and effective  communications 
don’t always go together;

◆◆ However, effective communication and mutual respect are like 
peanut butter and chocolate. Each is good by itself, but together 
they’re excellent.

◆◆ Be a facilitator of communication and help overcome roadblocks. 
Remember that your employees’ jobs are to get the work done, 
and your job is making your employees as effective at that as 
possible.

◆◆ Understand the different types of communication in your 
organization, be aware of what’s working and what’s not, and 
don’t “fix it” only by holding more meetings.

Where Did We End Up?
Our team had a good teachable moment and a few laughs, after 
we were done being frustrated with each other and after the 
systems were back in production. Thanks to this episode, we 
now communicate more effectively in this group, and we have a 
running joke about how few people on our team actually speak 
“Remedyese,” and how certain developers are not allowed 
to speak in public without an interpreter present. We have a 
newfound respect for each other’s technical abilities. And we 
had a chance to talk about computer architectures and IPC, 
topics that I’ve made sure my charming and patient non-geek 
wife gets exposed to every chance I get. Our team still has new 
communications challenges crop up all the time, and we treat 
each one the same way—with patience, respect for people, and 
focus on mission. I’m the manager. That’s my job.



Get Salted At 

2 0 1 4

28
30J

A
NSALTCONF

Register now at www.saltconf .com

Open to:

Community
Members

SaltStack
Customers

Partners Developers

SaltConf will include one full day of pre-conference SaltStack training on January 28th 

and two full days of conference sessions from January 29 - 30. Get Salted through 

hands-on labs and training, talks by you, your peers, SaltStack engineers and developers, 

big keynotes, and lots of hacking and networking. 

 The SaltConf agenda is suitable for systems administrators, cloud builders and architects, 

enterprise IT operations, IT directors and managers, developers, and site reliability 

engineers. 

The Annual SaltStack Global User Conference

C

M

Y

CM

MY

CY

CMY

K

SLT00114-Usenix Ad-SaltConf-PRINT.pdf   1   12/19/13   2:57 PM



 | JANUARY 2014 | WWW.UseNix.oRg PAge 5

Code Review for System Administrators 
E l i z a b E t h  K r u m b a c h  J o s E p h

Over the past year, OpenStack [1] has seen fast-paced adoption by 
major vendors and a staggering growth in its developer community 
from companies around the world. As a result, the relatively new 

cloud platform has become quite the popular topic throughout the open source 
community. The infrastructure used to manage the growth of the project 
over this time has had to handle this load, while still managing to review  
and test the code going into the project. In this article, I’ll look at how code 
review practices for OpenStack can be applied to system administration.

The infrastructure [2][3] for the OpenStack project is fully open source and managed by 
a geographically distributed team of systems administrators from multiple companies who 
are responsible for the installation and maintenance of the tools used by the OpenStack 
project. This infrastructure includes the full code review and continuous integration 
system, plus wiki, pastebin, etherpad, chat bots, and other tools used by project members on 
a day to day basis. A major boon to the ability for all of us to collaborate effectively is by not 
only imposing review upon code going into OpenStack itself, but also to all the configura-
tion files and code that we deploy in production for the infrastructure.

The code review and continuous integration system used in OpenStack is built with the 
needs of OpenStack in mind. OpenStack is essentially a big project made up of many 
smaller projects that operate largely independently within the OpenStack umbrella. Each 
project has different team leads, core contributors, and reviewers. As such, the system 
needed extensive integration testing as part of what is tested before code is committed to 
the git repositories. We’re using Gerrit [4] for the front end code review mechanism and 
Jenkins [5] as our continuous integration server that launches tests. To glue these together, 
we use a test worker distributor, Gearman [6], to hand things off to our Jenkins servers. 
We use a couple other tools to manage the queuing of testing and merging of code (Zuul [7]), 
and to manage the pool of machines used to do tests (Nodepool [8]), both of which are open 
source and were developed by the infrastructure team.

Systems administration does not typically need the same kinds of tests that fully inte-
grated code within OpenStack does. Instead, sysadmins on my team use this same system, 
but we have set up a series of checks to run against all changes to our config files and other 
code that the team checks in, including:

◆◆ flake8 (running pep8 and pyflakes) for our Python scripts

◆◆ puppet parser validate & puppet-lint against any changes in Puppet

◆◆ XML syntax checking on some XML files where the structure is known

These checks are run as soon as we submit a code or configuration change into the code 
review system, giving the system administrator feedback within a few minutes about 
whether their code has passed these basic tests. We regularly assess this list, improve it 

elizabeth Krumbach Joseph 
is an Automation and Tools 
engineer at HP working on the 
openstack infrastructure team. 
she is also a member of the 

Ubuntu Community Council, one of the two 
governing bodies of the Ubuntu Project, and on 
the Board of Directors for Partimus.org, a non-
profit in the san Francisco Bay area providing 
Linux-based computers to schools in need. 
lyz@princessleia.com

References
[1] OpenStack:  
http://www.openstack.org/

[2] OpenStack infrastructure: 
http://ci.openstack.org/

[3] OpenStack infrastructure code 
repository: https://git.openstack.
org/cgit/openstack-infra

[4] Gerrit: https://code.google.
com/p/gerrit/

[5] Jenkins: http://jenkins-ci.org/

[6] Gearman: http://gearman.org/

[7] Zuul: http://ci.openstack.org/
zuul/

[8] Nodepool: http://ci.openstack.
org/nodepool.html

http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://www.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
http://ci.openstack.org/
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://git.openstack.org/cgit/openstack-infra
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
https://code.google.com/p/gerrit/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://jenkins-ci.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://gearman.org/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/zuul/
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html
http://ci.openstack.org/nodepool.html


 | JANUARY 2014 | WWW.UseNix.oRg PAge 6

Code Review for System Administrators

and add more when we expand the types of code or configura-
tion files we are submitting so that we get as much benefit as 
possible from automated tests.

Next the changes are reviewed by contributors to the infra-
structure team. As an open source project team, we allow 
any one to do basic code reviews, but restrict the higher levels 
of approval to core project members who have a history of being 
trustworthy and providing a high level of code review expertise.

This human element of the system is perhaps the most valuable 
part of having a code review process for system administrators. 
The process provides an opportunity to have multiple eyes on 
even simple changes before submitting something that could 
possibly impact hundreds of active developers from dozens of 
different companies. A single system administrator is no lon-
ger responsible for applying a change. Instead, a team collab-
oratively reviews and approves it. This collaboration can make 
for a lower stress, higher reward work environment.

As a distributed team, our review process gives us a great plat-
form for checking in a “Work in Progress” change that we can 
actively collaborate on by commenting on the changes inside 
the code review system. Also, team members have an opportu-
nity to see the solution that one of us came up with, and make 
suggestions for tackling the issue in an entirely different way 
now that we’ve seen how the proposed suggestion may work. 
By having the proposed changes in front of us, we’re also able 
to test code independently of the submitter before giving our 
approval, which often catches edge cases that are found in our 
varied personal test environments.

Because all of our changes go through code review, including 
those from core contributors, there is little technical difference 
between a submission provided by a new contributor or some-
one who has been with the project for a long time. Every review 
is handled independently, and we have the same social require-
ments for accepting a change (two core reviewers should give 
their approval). This also means that no one has the ability to 
commit directly to the code repository. Changes by core mem-
bers, like those from anyone else, must pass syntax checking 
and get reviews.

Once the code lands in our git repository, the Puppet master 
picks it up and it is deployed automatically to the appropriate 
servers. If the change is to code being run on a server, we use a 
Puppet mechanism for handling code repositories that regu-
larly checks for updates in the repository and restarts services 
on changes as needed.

All of these processes have trained members of the team to 
be collaborative by default, an important thing for a dis-
tributed team or one that tends to have different systems 
administrators focusing on different projects. This has helped 

 tremendously when the limitations for managing systems 
completely through code review and code repositories are 
considered.

The first obvious limitation is bootstrapping this process. 
To get the process going, you need basic servers set up, and 
when adding new servers to the infrastructure from our pool 
of OpenStack-based virtual machines, there are still portions 
we have not been able to automate completely. Also, there is the 
handling of passwords, SSL keys, and other sensitive data that 
cannot be made available generally to every member of the 
project. These limitations are both handled by having a “root” 
team that has access to creating new servers and to adding, 
viewing, and manipulating the sensitive data.

We’ve also had to handle the inevitable problem that comes 
up where you simply must log into a server for some reason. 
Perhaps a MySQL database needs a manual edit, or the Puppet 
agent running on the server has crashed. We may also need to 
debug something, so shell access to browse logs and run diag-
nostic tools is essential. To handle this, root team members 
have access to all the servers, and then access is granted on a 
server by server basis to team members with expertise in work-
ing on specific applications in the infrastructure. We also run 
public monitoring of our servers via Cacti and have a Puppet 
dashboard so basic statistics about system resources and the 
application of changes via Puppet can be tracked and reviewed 
by any contributor.

Complicated upgrades or migrations also are difficult to man-
age through a code review system. In these cases, shell access 
often is required, but our collaborative culture makes it so that 
we’re always working together on these projects. Typically, 
resolving these situations starts off in an online team meeting 
in which we flesh out the migration plan in a collaborative edit-
ing tool (such as etherpad), then we schedule the maintenance 
window when multiple team members will be available. Once 
we get to the maintenance time, we work together on Internet 
Relay Chat (IRC) to run through the list of tasks defined in the 
etherpad and work together if anything goes awry.

There are also the inevitable emergencies that crop up from 
time to time. In these cases, the root admins do have the ability 
to log in and shut down the Puppet agent and make changes 
manually to unblock us. The team has been disciplined so that 
these incidents are rare, as we’d much rather fix it via a com-
mit, and followed up with as soon as the emergency has passed 
and more core members are available to assess and perma-
nently solve the problem. 

Fortunately these limitations are a small percentage of what 
we encounter, and our primary contact with our systems on a 
day to day basis is through the code review system. In addition 
to public Cacti and Puppet dashboard that any contributor can 



 | JANUARY 2014 | WWW.UseNix.oRg PAge 7

Code Review for System Administrators

access, we also are diligent about maintaining our team docu-
mentation for how we run and make changes to our various 
services and make sure all our configurations and scripts are 
browseable by contributors in our public git repository. This 
makes it relatively easy for new contributors to join our team 
and get up to speed with our full infrastructure, or simply make 
a single change to address a pain point in our infrastructure, 

from adding a new test to the continuous integration system to 
adding a favicon to the project status page. Documentation also 
allows our existing system administrators to focus on their 
core skills and slowly get up to speed with other portions of the 
infrastructure by reading documentation, doing reviews, and 
watching other team members work.

USENIX is the first computing association to offer free and open 
access to all of our conferences proceedings and videos. We 
stand by our mission to foster excellence and innovation while 
supporting research with a practical bias. Your membership fees 
play a major role in making this endeavor successful.

www.usenix.org/membership

Please help us support open access. 
Renew your USENIX membership 

and ask your colleagues to join or renew today!

Do you know about the 
USENIX Open Access Policy?



 | JANUARY 2014 | WWW.UseNix.oRg PAge 8

This World of Ours
J a m e s  m i c k e n s

Sometimes, when I check my work email, I’ll find a message that says 
“Talk Announcement: Vertex-based Elliptic Cryptography on N-way 
Bojangle Spaces.” I’ll look at the abstract for the talk, and it will say 

something like this: “It is well-known that five-way secret sharing has been 
illegal since the Protestant Reformation [Luther1517]. However, using recent 
advances in polynomial-time Bojangle projections, we demonstrate how a set 
of peers who are frenemies can exchange up to five snide remarks that are 
robust to Bojangle-chosen plaintext attacks.” I feel like these emails start in 
the middle of a tragic but unlikely-to-be-interesting opera. Why, exactly, have 
we been thrust into an elliptical world? Who, exactly, is Bojangle, and why do 
we care about the text that he chooses? If we care about him because he has 
abducted our families, can I at least exchange messages with those family 
members, and if so, do those messages have to be snide? Researchers who 
work on problems like these remind me of my friends who train for triath-
lons. When I encounter such a friend, I say, “In the normal universe, when 
are you ever going to be chased by someone into a lake, and then onto a bike, 
and then onto a road where you can’t drive a car, but you can run in a wetsuit? 
Will that ever happen? If so, instead of training for such an event, perhaps a 
better activity is to discover why a madman is forcing people to swim, then 
bike, and then run.” My friend will generally reply, “Triathlons are good exer-
cise,” and I’ll say, “That’s true, assuming that you’ve made a series of bad life 
decisions that result in you being hunted by an amphibious Ronald McDon-
ald.” My friend will say, “How do you know that it’s Ronald McDonald who’s 
chasing me?”, and I’ll say “OPEN YOUR EYES WHO ELSE COULD IT BE?”, 
and then my friend will stop talking to me about triathlons, and I will be okay 
with this outcome.

In general, I think that security researchers have a problem with public relations. Secu-
rity people are like smarmy teenagers who listen to goth music: they are full of morbid 
and detailed monologues about the pervasive catastrophes that surround us, but they are 
much less interested in the practical topic of what people should do before we’re inevitably 
killed by ravens or a shortage of black mascara. It’s like, websites are amazing BUT DON’T 
CLICK ON THAT LINK, and your phone can run all of these amazing apps BUT MANY 
OF YOUR APPS ARE EVIL, and if you order a Russian bride on Craigslist YOU MAY GET 
A CONFUSED FILIPINO MAN WHO DOES NOT LIKE BEING SHIPPED IN A BOX. It’s 
not clear what else there is to do with computers besides click on things, run applications, 
and fill spiritual voids using destitute mail-ordered foreigners. If the security people are 
correct, then the only provably safe activity is to stare at a horseshoe whose integrity has 

James Mickens is a researcher 
in the Distributed systems 
group at Microsoft’s Redmond 
lab. His current research 
focuses on web applications, 

with an emphasis on the design of Javascript 
frameworks that allow developers to 
diagnose and fix bugs in widely deployed 
web applications. James also works on fast, 
scalable storage systems for datacenters. 
James received his PhD in computer science 
from the University of Michigan, and a 
bachelor’s degree in computer science from 
georgia Tech. mickens@microsoft.com



 | JANUARY 2014 | WWW.UseNix.oRg PAge 9

This World of Ours

been verified by a quorum of Rivest, Shamir, and Adleman. 
Somehow, I am not excited to live in the manner of a Pilgrim 
who magically has access to 3-choose-2 {Rivest, Shamir, Adle-
man}, mainly because, if I were a bored Pilgrim who possessed 
a kidnapping time machine, I would kidnap Samuel L. Jackson 
or Robocop, not mathematical wizards from the future who 
would taunt me with their knowledge of prime numbers and 
how “Breaking Bad” ends.

The only thing that I’ve ever wanted for Christmas is an 
automated way to generate strong yet memorable passwords. 
Unfortunately, large swaths of the security community are 
fixated on avant garde horrors such as the fact that, during 
solar eclipses, pacemakers can be remotely controlled with a 
garage door opener and a Pringles can. It’s definitely unfor-
tunate that Pringles cans are the gateway to an obscure set 
of Sith-like powers that can be used against the 0.002% of 
the population that has both a pacemaker and bitter enemies 
in the electronics hobbyist community. However, if someone 
is motivated enough to kill you by focusing electromagnetic 
energy through a Pringles can, you probably did something to 
deserve that. I am not saying that I want you dead, but I am 
saying that you may have to die so that researchers who study 
per-photon HMACs for pacemaker transmitters can instead 
work on making it easier for people to generate good passwords. 
“But James,” you protest, “there are many best practices for 
choosing passwords!” Yes, I am aware of the “use a vivid image” 
technique, and if I lived in a sensory deprivation tank and I had 
never used the Internet, I could easily remember a password 
phrase like “Gigantic Martian Insect Party.” Unfortunately, I 
have used the Internet, and this means that I have seen, heard, 
and occasionally paid money for every thing that could ever be 
imagined. I have seen a video called “Gigantic Martian Insect 
Party,” and I have seen another video called “Gigantic Martian 
Insect Party 2: Don’t Tell Mom,” and I hated both videos, but 
this did not stop me from directing the sequel “Gigantic Mar-
tian Insect Party Into Darkness.” Thus, it is extremely difficult 
for me to generate a memorable image that can distinguish 
itself from the seething ocean of absurdities that I store as a 
result of consuming 31 hours of media in each 24-hour period. 

So, coming up with a memorable image is difficult, and to make 
things worse, the security people tell me that I need different 
passwords for different web sites. Now I’m expected to remem-
ber both “Gigantic Martian Insect Party” and “Structurally 
Unsound Yeti Tote-bag,” and I have to somehow recall which 
phrase is associated with my banking web site, and which one 
is associated with some other site that doesn’t involve extrater-
restrial insects or Yeti accoutrements. This is uncivilized and 
I demand more from life. Thus, when security researchers tell 
me that they’re not working on passwords, it’s like physicists 
from World War II telling me that they’re not working on radar 
or nuclear bombs, but instead they’re unravelling the mystery 
of how bumblebees fly. It’s like, you are so close, and yet so far. 
You almost get it, but that’s worse than not getting it at all.

My point is that security people need to get their priorities 
straight. The “threat model” section of a security paper resem-
bles the script for a telenovela that was written by a paranoid 
schizophrenic: there are elaborate narratives and grand con-
spiracy theories, and there are heroes and villains with fantas-
tic (yet oddly constrained) powers that necessitate a grinding 
battle of emotional and technical attrition. In the real world, 
threat models are much simpler (see Figure 1). Basically, you’re 
either dealing with Mossad or not-Mossad. If your adversary is 
not-Mossad, then you’ll probably be fine if you pick a good pass-
word and don’t respond to emails from ChEaPestPAiNPi11s@
virus-basket.biz.ru. If your adversary is the Mossad, YOU’RE 
GONNA DIE AND THERE’S NOTHING THAT YOU CAN DO 
ABOUT IT. The Mossad is not intimidated by the fact that you 
employ https://. If the Mossad wants your data, they’re going to 
use a drone to replace your cellphone with a piece of uranium 
that’s shaped like a cellphone, and when you die of tumors filled 
with tumors, they’re going to hold a press conference and say 
“It wasn’t us” as they wear t-shirts that say “IT WAS DEFI-
NITELY US,” and then they’re going to buy all of your stuff 
at your estate sale so that they can directly look at the photos 
of your vacation instead of reading your insipid emails about 
them. In summary, https:// and two dollars will get you a bus 
ticket to nowhere. Also, SANTA CLAUS ISN’T REAL. When it 
rains, it pours.

Threat Ex-girlfriend/boyfriend breaking into 
your email account and publicly releasing 
your correspondence with the My Little 
Pony fan club

Organized criminals breaking into 
your email account and sending 
spam using your identity

The Mossad doing Mossad things 
with your email account

Solution Strong passwords Strong passwords + common 
sense (don’t click on unsolicited 
herbal Viagra ads that result in 
keyloggers and sorrow)

◆◆ Magical amulets?

◆◆ Fake your own death, move into a 
submarine?

◆◆ YOU’RE STILL GONNA BE 
MOSSAD’ED UPON

Figure 1: Threat models



 | JANUARY 2014 | WWW.UseNix.oRg PAge 10

This World of Ours

The Mossad/not-Mossad duality is just one of the truths that 
security researchers try to hide from you. The security com-
munity employs a variety of misdirections and soothing words 
to obscure the ultimate nature of reality; in this regard, they 
resemble used car salesmen and Girl Scouts (whose “cookie 
sales” are merely shell companies for the Yakuza). When you 
read a security paper, there’s often a sentence near the begin-
ning that says “assume that a public key cryptosystem exists.” 
The authors intend for you to read this sentence in a breezy, 
carefree way, as if establishing a scalable key infrastructure 
is a weekend project, akin to organizing a walk-in closet or 
taming a chinchilla. Given such a public key infrastructure, the 
authors propose all kinds of entertaining, Ferris Bueller-like 
things that you can do, like taking hashes of keys, and arrang-
ing keys into fanciful tree-like structures, and determining 
which users are bad so that their keys can be destroyed, or 
revoked, or mixed with concrete and rendered inert. To better 
describe the Mendelian genetics of keys, the authors will define 
kinky, unnatural operators for the keys, operators that are 
described as unholy by the Book of Leviticus and the state of 
Alabama, and whose definitions require you to parse opaque, 
subscript-based sentences like “Let KR ₩ KT represent the 
semi-Kasparov foo-dongle operation in a bipartite XYabc space, 
such that the modulus is spilt but a new key is not made.”

This Caligula-style key party sounds like great fun, but con-
structing a public key infrastructure is incredibly difficult in 
practice. When someone says “assume that a public key cryp-
tosystem exists,” this is roughly equivalent to saying “assume 
that you could clone dinosaurs, and that you could fill a park 
with these dinosaurs, and that you could get a ticket to this 
‘Jurassic Park,’ and that you could stroll throughout this 
park without getting eaten, clawed, or otherwise quantum 
entangled with a macroscopic dinosaur particle.”  With public 
key cryptography, there’s a horrible, fundamental challenge 
of finding somebody, anybody, to establish and maintain the 
infrastructure. For example, you could enlist a well-known 
technology company to do it, but this would offend the refined 
aesthetics of the vaguely Marxist but comfortably bourgeoisie 
hacker community who wants everything to be decentralized 
and who non-ironically believes that Tor is used for things 
besides drug deals and kidnapping plots. Alternatively, the 
public key infrastructure could use a decentralized “web-
of-trust” model; in this architecture, individuals make their 
own keys and certify the keys of trusted associates, creating 
chains of attestation. “Chains of Attestation” is a great name 
for a heavy metal band, but it is less practical in the real, non-
Ozzy-Ozbourne-based world, since I don’t just need a chain 
of attestation between me and some unknown, filthy stranger 
— I also need a chain of attestation for each link in that chain. 
This recursive attestation eventually leads to fractals and 
H.P. Lovecraft-style madness. Web-of-trust cryptosystems 

also result in the generation of emails with incredibly short 
bodies (e.g., “R U gonna be at the gym 2nite?!?!?!?”) and multi-
kilobyte PGP key attachments, leading to a packet framing 
overhead of 98.5%. PGP enthusiasts are like your friend with 
the ethno-literature degree whose multi-paragraph email 
signature has fourteen Buddhist quotes about wisdom and 
mankind’s relationship to trees. It’s like, I GET IT. You care 
deeply about the things that you care about. Please leave me 
alone so that I can ponder the inevitability of death.

Even worse than the PGP acolytes are the folks who claim that 
we can use online social networks to bootstrap a key infra-
structure. Sadly, the people in an online social network are the 
same confused, ill-equipped blunderhats who inhabit the phys-
ical world. Thus, social network people are the same people 
who install desktop search toolbars, and who try to click on the 
monkey to win an iPad, and who are willing to at least enter-
tain the notion that buying a fortune-telling app for any more 
money than “no money” is a good idea. These are not the best 
people in the history of people, yet somehow, I am supposed 
to stitch these clowns into a rich cryptographic tapestry that 
supports key revocation and verifiable audit trails. One time, 
I was on a plane, and a man asked me why his laptop wasn’t 
working, and I tried to hit the power button, and I noticed that 
the power button was sticky, and I said, hey, why is the power 
button sticky, and he said, oh, IT’S BECAUSE I SPILLED AN 
ENTIRE SODA ONTO IT BUT THAT’S NOT A PROBLEM 
RIGHT? I don’t think that this dude is ready to orchestrate 
cryptographic operations on 2048-bit integers.

Another myth spread by security researchers is that the planet 
Earth contains more than six programmers who can correctly 
use security labels and information flow control (IFC). This 
belief requires one to assume that, even though the most popu-
lar variable names are “thing” and “thing2,” programmers will 
magically become disciplined software architects when con-
fronted with a Dungeons-and-Dragons-style type system that 
requires variables to be annotated with rich biographical data 
and a list of vulnerabilities to output sinks. People feel genuine 
anxiety when asked if they want large fries for just 50 cents 
more, so I doubt that unfathomable lattice-based calculus is 
going to be a hit with the youths. I mean, yes, I understand how 
one can use labels to write a secure version of HelloWorld(), 
but once my program gets bigger than ten functions, my desire 
to think about combinatorial label flows will decrease and be 
replaced by an urgent desire to DECLASSIFY() so that I can 
go home and stop worrying about morally troubling phrases 
like “taint explosion” that are typically associated with the 
diaper industry and FEMA. I realize that, in an ideal world, I 
would recycle my trash, and contribute 10% of my income to 
charity, and willingly accept the cognitive overhead of fine-
grained security labels. However, pragmatists understand that 



 | JANUARY 2014 | WWW.UseNix.oRg PAge 11

This World of Ours

I will spend the bulk of my disposable income on comic books, 
and instead of recycling, I will throw all of my trash into New 
Jersey, where it will self-organize into elaborate “Matrix”-like 
simulations of the seagull world, simulations that consist solely 
of choking-hazard-sized particles and seagull-shaped objects 
that are not seagulls and that will not respond to seagull mat-
ing rituals by producing new seagull children. This is definitely 
a problem, but problem identification is what makes science 
fun, and now we know that we need to send SWAT teams into 
New Jersey to disarm a trash-based cellular automaton that 
threatens the seagull way of life. Similarly, we know that IFC 
research should not focus on what would happen if I some-
how used seventeen types of labels to describe three types of 
variables. Instead, IFC research should focus on what will 
happen when I definitely give all my variables The God Label 
so that my program compiles and I can return to my loved ones. 
[Incidentally, I think that “The God Label” was an important 
plot device in the sixth “Dune” novel, but I stopped reading 
that series after the fifth book and my seven-hundredth time 
reading a speech that started “WHOEVER CONTROLS THE 
SPICE CONTROLS THE (SOME THING WHICH IS NOT 
THE SPICE).” Also note that if a police officer ever tries to give 
you a speeding ticket, do not tell him that you are the Kwisatz 
Haderach and You Can See Where No Bene Gesserit Can See 
and you cannot see a speeding ticket. This defense will not hold 
up in court, and the only “spice” that you will find in prison is 
made of mouthwash and fermented oranges.]

The worst part about growing up is that the world becomes 
more constrained. As a child, it seems completely reasonable to 
build a spaceship out of bed sheets, firecrackers, and lawn fur-
niture; as you get older, you realize that the S.S. Improbable will 
not take you to space, but instead a lonely killing field of fire, 
Child Protective Services, and awkward local news interviews, 
not necessarily in that order, but with everything showing up 
eventually. Security research is the continual process of dis-
covering that your spaceship is a deathtrap. However, as John 
F. Kennedy once said, “SCREW IT WE’RE GOING TO THE 
MOON.” I cannot live my life in fear because someone named 
PhreakusMaximus at DefConHat 2014 showed that you can 
induce peanut allergies at a distance using an SMS message 
and a lock of your victim’s hair. If that’s how it is, I accept it and 
move on. Thinking about security is like thinking about where 
to ride your motorcycle: the safe places are no fun, and the fun 
places are not safe. I shall ride wherever my spirit takes me, 
and I shall find my Gigantic Martian Insect Party, and I will, 
uh, probably be rent asunder by huge cryptozoological man-
dibles, but I will die like Thomas Jefferson: free, defiant, and 
without a security label.



Why Join USENIX?
We support members’ professional and technical  
development through many ongoing activities, including:

 Open access to research presented at our events 

 Workshops on hot topics

 Conferences presenting the latest in research and practice 

 LISA: The USENIX Special Interest Group for Sysadmins 

 ;login:, the magazine of USENIX 

 Student outreach

Your membership dollars go towards programs including:
 Open access policy: All conference papers and videos are immediately free to everyone upon 

 publication

 Student program, including grants for conference attendance 

 Good Works program

Helping our many communities share, develop, and adopt ground-breaking ideas in advanced technology

Join us at www.usenix.org


	Contents
	/var/log/manager: Message Not Received
	Code Review for System Administrators
	This World of Ours

