
E X C L U S I V E E L E C T R O N I C E D I T I O N   	 S e p te m b er 2 0 1 3

E d i t o r
Rik Farrow
rik@usenix.org

M a n a g i n g E d i t o r
Rikki Endsley
rikki@usenix.org

P r o d u c t i o n
Arnold Gatilao
Casey Henderson
Michele Nelson

U S E NI X Ass o c i at i o n
2560 Ninth Street, Suite 215,
Berkeley, California 94710
Phone: (510) 528-8649
FAX: (510) 548-5738
www.usenix.org

©2013 USENIX Association
USENIX is a registered trademark of the USENIX
Association. Many of the designations used by manu
facturers and sellers to distinguish their products are
claimed as trademarks. USENIX acknowledges all trade
marks herein. Where those designations appear in this
publication and USENIX is aware of a trademark claim,
the designations have been printed in caps or initial caps.

2	� Sysadmin Tools for Tackling the Cloud
Mark Hinkle

5	� Deploying a Python App with Puppet
Spencer Krum and William Van Hevelingen

9	� Configuring Your Linux System with the
CFEngine Design Center
Diego Zamboni

14	� The Slow Winter
James Mickens

E X C L U S I V E E L E CTRONIC E DITION   	 S E P T E M B E R 2 0 1 3

mailto:rik@usenix.org
mailto:rikki@usenix.org
www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 2

Sysadmin Tools for Tackling the Cloud
M a r k H i n k l e

If you read much in the way of the tech media you are probably numb
from the cloud computing hype. You have real problems servers to run,
backups to execute, and networks to configure. These things exist in

two worlds for most sysadmins: your data center and an increasing number
of third-party cloud services. Adding the following tools to your sysadmin
toolbox will allow you to take advantage of the cloud without missing a beat.

Command and Control Stacks
Most system administrators who do things at scale are already utilizing configuration
management tools such as Cfengine, Puppet and/or Chef. All three have considerable
capabilities for automation and configuration; however as you move to the cloud, consid-
ering tools that utilize access methods that will likely exist natively on your cloud infra-
structure as well as your legacy metal is prudent.

Ansible [1] is a simple open source orchestration stack that allows you to communicate
with servers over SSH. In turn, this allows you to communicate with machines via a proto-
col that’s likely already available on your machine to execute commands over SSH defined
in YAML to call programs written in virtually any language, including Python, Ruby, or
even Perl.

SaltStack [2] is another open source configuration management and execution framework
along the same lines as Ansible, but it differs by using ZeroMQ as a message bus to execute
changes across a network in parallel.

Cloud Controllers
You likely already have a bunch of infrastructure running on your metal and, as that infra-
structure goes out of service, you probably are looking to move some of these workloads to
the cloud. The decision you may struggle with is determining which cloud. Until you move
those services, you won’t know how your applications perform and the nuances of each
cloud. If you are of a devops mentality, you probably have or will design systems that are
easily replicated infrastructure across different architectures, cloud or otherwise. These
tools will help you achieve that goal.

If you made your choice already, you may be instrumenting your shop to a certain API.
Otherwise, one strategy is to instrument to a single cloud controller that has API compat-
ibility with multiple clouds. Jclouds [3], an Apache incubator project (however, it is very
mature), is a perfect example of this type of technology. Jclouds is a library that furnishes
a single source to develop tools against—but still broker calls to—multiple clouds through
the use of portable cloud abstractions. Jclouds users can take advantage of Java or Clojure
as the domain-specific language (DSL). Python experts can take advantage of similar
functionality in Apache Libcloud [4], and Ruby enthusiasts can take advantage of their
existing skills using Fog [5].

Mark Hinkle is the Senior
Director, Open Source
Solutions, at Citrix. He joined
Citrix as a result of their July
2011 acquisition of Cloud.com,

where he was Vice President of Community.
He is currently responsible for Citrix Open
Source Business Office and the Citrix efforts
around Apache CloudStack, Open Daylight,
Xen Project, and XenServer. Previously, Hinkle
was the VP of Community at Zenoss Inc.,
a producer of the open source application,
server, and network management software.
He also is a longtime open source expert and
author, having served as editor in chief for
both LinuxWorld Magazine and Enterprise Open
Source Magazine. Mark Hinkle wrote the book
Windows to Linux Business Desktop Migration
(Thomson, 2006). He is a contributor to
NetworkWorld’s Open Source Subnet, and
his personal blog on open source, technology,
and new media can be found at www.
socializedsoftware.com. Follow him on Twitter
@mrhinkle. mrhinkle@socializesoftware.com

https://www.usenix.org
www.socializedsoftware.com
www.socializedsoftware.com

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 3

Sysadmin Tools for Tackling the Cloud

Storage
As you start to utilize cloud services, you will quickly realize
the advantages and challenges of deploying infrastructure in a
much more geographically diverse landscape. Often the chal-
lenge is to provide data in a distributed environment with vary-
ing levels of utility. For example, you may have data that needs
to be stored with varying degrees of availability and integrity.
Google has done a considerable amount of research in this area
[6] and, if you want to geek out on the considerations for glob-
ally distributed data, their findings are informative. Whereas
Google focuses on the why, I would direct you to the how.

Gluster [7] is a network/cluster file system written in user
space and uses Filesystem in User Space (FUSE) to hook itself
with virtual file system (VFS) layer. Gluster works with com-
mon concrete file systems, such as ext3, ext4, and xfs. In terms
of random file access, the more servers you add the better this
scales. Common use cases are for content that is replicated and
served behind caching services, such as images or music files
delivered by Pandora, a rumored Gluster user.

Ceph [8] is similar in that it is an open source file system and
distributed file store that can provide storage, much like Ama-
zon’s S3 or Block storage, through their RADOS block device
for KVM and additional hypervisors, which will be added soon.

Built on top of Basho’s Riak NoSQL database, Riak CS [9] is yet
another open source object store. Riak provides a highly avail-
able, fault-tolerant storage system that includes compatibility
with Amazon’s S3 API. Riak CS can provide storage for images,
documents, VM backups, archives of information, and other
large objects on utility hardware, providing a foundation for
storage that compliments your cloud at a much more attractive
price point than legacy enterprise storage solutions.

Summary
There are lots of reasons to move to the cloud, and plenty of
reasons to continue managing your own infrastructure. The
solutions described in this article augment either strategy by
providing tools to help you automate your increasingly distrib-
uted infrastructure, which lets you keep your options open as
you explore new cloud services or look for affordable storage
solutions that are uniquely suited to the cloud.

References
[1] Ansible: http://www.ansibleworks.com/

[2] SaltStack: http://saltstack.com/community.html

[3] Jclouds: http://jclouds.incubator.apache.org/

[4] Apache Libcloud: http://libcloud.apache.org/

[5] Fog: http://fog.io/

[6] Ford, D., Labelle, F., Popovici, F., Stokely, M., Truong, V.,
Barroso, L., Grimes, C., and Quinlan, S., 2010, Availability
in globally distributed storage systems, Proceedings of the
9th USENIX Symposium on Operating Systems Design and
Implementation, USENIX (2010), http://www.usenix.org/
events/osdi10/tech/full_papers/Ford.pdf

[7] Gluster: http://www.glusterfs.org/

[8] Ceph: http://ceph.com/

[9] Riak CS: http://basho.com/riak-cloud-storage/

https://www.usenix.org
http://www.ansibleworks.com/
http://saltstack.com/community.html
http://jclouds.incubator.apache.org/
http://libcloud.apache.org/
http://fog.io/
http://www.usenix.org/legacy/events/osdi10/tech/full_papers/Ford.pdf
http://www.usenix.org/legacy/events/osdi10/tech/full_papers/Ford.pdf
http://www.glusterfs.org
http://ceph.com/
http://basho.com/riak-cloud-storage/

Why Join USENIX?
We support members’ professional and technical
development through many ongoing activities, including:

 Open access to research presente d at our events

 Workshops on hot topics

 Conferences presenting the latest in research and practice

 LISA: The USENIX Special Interest Group for Sysadmins

 ;login:, the magazine of USENIX

 Student outreach

Your membership dollars go towards programs including:
 Open access policy: All conference papers and videos are immediately free to everyone upon publication

 Student program, including grants for conference attendance

 Good Works program

Helping our many communities share, develop, and adopt ground-breaking ideas in advanced technology

Join us at www.usenix.org

Limited Time ;login: Subscription Off er Now Available

Enjoying the free article? Take advantage of this special off er: For only $55,
get a 12 month subscription to the electronic edition of ;login:, the highly
regarded bimonthly USENIX magazine, as well as access to ;login: logout,
our new exclusive electronic publication. ;login: is available in PDF, ePub,
and Mobi formats.

;login:, offers a selection of articles, conference reports, book reviews,
and research, which strive to present the most exciting and relevant
information to our community. Themed issues focus on system adminis-
tration, file systems, security, networking, operating systems, and more.
A sampling of previous articles include:

• “Ganeti: Cluster Virtualization Manager,” Trotter and Limoncelli,
June 2013

• “A Study of Linux File System Evolution,” Lu et al., June 2013
• “Interview with Ted Ts’o,” Farrow, June 2013
• “Do Users Verify SSH Keys?,” Gutmann, August 2011
• “ For Extreme Parallelism, Your OS Is Sooooo Last-Millennium,”

Knauerhase, Cledat, and Teller, October 2012

To subscribe, please go to www.usenix.org/login/promotion and enter coupon code LOGINSUB10 at checkout.

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 5

Deploying a Python App with Puppet
S p e n c e r K r u m a n d W i l l i a m V a n H e v e l i n g e n

In this article, we will explain how to deploy a simple Django app from
source using Puppet [1]. Puppet is an open source configuration man-
agement tool developed by Puppet Labs, a Portland-based automation

startup. The Puppet software pulls its configuration from code written in a
Ruby DSL, which makes Puppet extremely configurable and pluggable. The
application we are going to deploy is OSQA [2], an open source stack over-
flow-like web application. Because Puppet is distribution-agnostic, we can do
this on any modern Linux. This recipe of Puppet code easily can be converted
to your automatic deployment needs.

To deploy our web application, we are going to build a Puppet class and install some public
modules. First make sure your system has git and Puppet 2.7.x or later installed. Pup-
pet is available in the standard Ubuntu repositories as well as EPEL for Red Hat 6-based
distributions. If you want the latest version of Puppet, which won’t be required today, you
can add the Puppet Labs package repository for your operating system. You will also need
to use the Puppet Labs package repos if you are on a Red Hat 5-based distribution. You can
also install Puppet from RubyGems.

Lets create a module to hold our class. We can use the Puppet utility to build the skeleton
of the Puppet module:

$ puppet module generate demouser/osqa

Notice: Generating module at /root/demouser-osqa

demouser-osqa

demouser-osqa/spec

demouser-osqa/spec/spec_helper.rb

demouser-osqa/Modulefile

demouser-osqa/README

demouser-osqa/manifests

demouser-osqa/manifests/init.pp

demouser-osqa/tests

demouser-osqa/tests/init.pp

$ mv demouser-osqa/ /etc/puppet/modules/osqa

The vast majority of our code is going to be written into osqa/manifests/init.pp. We also
need to pull in some public Puppet modules we will use for component tasks:

$ puppet module install puppetlabs/vcsrepo

$ puppet module install puppetlabs/apache

$ puppet module install puppetlabs/mysql

$ git clone https://github.com/stankevich/puppet-python /etc/puppet/modules/python

Spencer Krum is a Linux and
application administrator with
UTI Worldwide, a shipping
and logistics firm. He lives
and works in Portland. He has

been using Linux and Puppet for years. Krum
is co-authoring Pro Puppet, 2nd Edition (http://
www.apress.com/9781430260400), which
should be available from Apress in October
2013. He is also writing an original book,
Beginning Puppet, which should be available
from Apress in late 2013. Krum helps maintain
a number of public Puppet modules on the
Puppet Forge. His favorite non-puppet open
source project to commit to is the Ops School
curriculum (opsschool.org), a project to build
an Operations 101 handbook/manual for
people who want to break into the operations
engineering career field. He enjoys hacking,
tennis, IRC bots, StarCraft, and Hawaiian food.
krum.spencer@gmail.com

William Van Hevelingen is
the Unix Team Lead at the
Computer Action Team
(TheCAT), which provides
IT support for the Maseeh

College of Engineering and Computer Science
at Portland State University. Van Hevelingen
oversees the Linux/Unix systems and services
for the college with the help of a small army of
volunteer students. He is an active contributor
to open source projects and is a co-author
(with Spencer Krum and Ben Kero) of the
second edition of Pro Puppet.
william.vanhevelingen@pdx.edu

https://www.usenix.org
http://www.apress.com/9781430260400
http://www.apress.com/9781430260400
krum.spencer@gmail.com
william.vanhevelingen@pdx.edu

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 6

Deploying a Python App with Puppet

We’re going to build the OSQA module part by part. If you want
to cut to the chase and see the final version, you can look at
https://github.com/nibalizer/puppet-module-osqa.

If you look in osqa/manifests/init.pp, you will find that
the Puppet module tool has already created some boiler-
plate for you. You should come back later and fill out this
documentation.

First, we need to add some parameters to this class so that it
can be used by others:

class osqa (

 $install_dir 	 = ‘/home/osqa’,

 $username 	 = ‘osqa’,

 $group 	 = ‘osqa’,

 $db_name 	 = ‘osqa’,

 $timezone 	 = ‘America/Los_Angeles’,

 $app_url 	 = ‘http://puppet-article-4’,

 $db_username 	 = ‘osqa’,

 $db_password 	 = ‘changme!’,

) {

…

This syntax means the class can be called with any of these
parameters, but if any are omitted the the default on the right
side will be used. Generally users will want to run this applica-
tion as the OSQA user, and out of the /home/osqa directory, but
someone might want to run it out of /var/www or /srv/www to
be more congruent with their existing infrastructure.

Next we will create the user, group, and do other preliminary
setup:

 group { $group:

 ensure => present,

 }

user { $username:

 ensure 	 => present,

 gid 	 => $group,

 managehome 	 => true,

 require 	 => Group[$username],

 }

 file { $install_dir:

 owner 	 => $username,

 recurse 	 => true,

 require 	 => Group[$username],

 before 	 => File[“${install_dir}/requirements.txt”],

 }

These stanzas are Puppet resources. When the class is
included on a host, these resources will be created. Notice that
the user resource has a require => relationship with the group

resource. Puppet is a declarative language; resources are not
created in the order of the file, but in a random order. The way
to break the randomness and chain logical dependencies is to
use the require or before syntax.

Next we create resources for managing Apache. Because we
are already including the Apache module, we can give very
high-level directives here. Unfortunately, the Apache module is
not really ready to manage WSGI applications, but we can work
around that using the custom_fragment parameter and a file
resource:

class { ‘apache’:

 default_vhost => false,

 }

 include apache::mod::wsgi

 # FIXME: 2013/08/16 apache module does not support wsgi yet

 file { ‘/etc/apache2/sites-enabled/wsgi.conf’:

 ensure	 => file,

 content	 => “WSGISocketPrefix \${APACHE_RUN_DIR}

WSGI\nWSGIPythonHome ${install_dir}/virtenv-osqa”,

 notify	 => Service[‘apache2’],

 }

 # FIXME: 2013/08/16 apache module does not support wsgi yet

 apache::vhost { ‘osqa-vhost’:

 port	 => 80,

 docroot	 => “${install_dir}/osqa-server”,

 custom_fragment 	 => “ WSGIDaemonProcess OSQA \n

WSGIProcessGroup OSQA\n WSGIScriptAlias / ${install_dir}/

osqa-server/osqa.wsgi\n “,

 directories 	 => [

 { path => “${install_dir}/osqa-server/forum/upfiles”, order

=> ‘deny,allow’, allow	 => ‘from all’ },

 { path => “${install_dir}/osqa-server/forum/skins”, order

=> ‘allow,deny’, allow	 => ‘from all’ }

],

 aliases	 => [

 { alias => ‘/m/’,		 path =>

“${install_dir}/osqa-server/forum/skins/” },

 { alias => ‘/upfiles/’	path =>

“${install_dir}/osqa-server/forum/upfiles/” }

],

 require	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

Next we need a source checkout of our application. This par-
ticular application is using svn, but the vcsrepo resource below
supports many version control systems, which is selected via
the provider attribute:

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 7

Deploying a Python App with Puppet

vcsrepo { “${install_dir}/osqa-server”:

 ensure	 => present,

 provider	 => svn,

 source 	 => ‘http://svn.osqa.net/svnroot/osqa/trunk/’,

 revision 	 => ‘1285’,

 user 	 => $username,

 owner 	 => $group,

 require 	 => [User[‘osqa’], File[$install_dir]],

 }

After this we have to create some file resources and set some
permissions that our application probably should create for
itself, but Puppet can do just fine:

file { “${install_dir}/osqa-server/log”:

 ensure 	 => directory,

 owner 	 => $username,

 group 	 => ‘www-data’,

 recurse 	 => true,

 mode 	 => ‘0775’,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

 file { “${install_dir}/osqa-server/log/django.osqa.log”:

 owner 	 => $username,

 group 	 => ‘www-data’,

 mode 	 => ‘0664’,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

 $osqa_directories = [

 “${install_dir}/osqa-server/forum/upfiles”,

 “${install_dir}/osqa-server/cache”,

 “${install_dir}/cache”,

 “${install_dir}/log”,

 “${install_dir}/forum_modules”]

 file { $osqa_directories:

 ensure 	 => directory,

 group 	 => ‘www-data’,

 mode 	 => ‘0770’,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

 file { “${install_dir}/osqa-server”:

 owner 	 => $username,

 group 	 => $group,

 recurse 	 => true,

 require 	 => Vcsrepo[“${install_dir}/osqa-server”],

 }

Next we use Puppet’s templating engine, which is the same
ERB templating you’ve possibly been exposed to in Ruby web

development, to create the wsgi file and configuration files for
our application:

file { “${install_dir}/osqa-server/osqa.wsgi”:

 content 	 => template(‘osqa/osqa.wsgi.erb’),

 require 	 => User[‘osqa’],

 }

 file { “${install_dir}/osqa-server/settings_local.py”:

 owner 	 => $username,

 content 	 => template(‘osqa/settings_local.py.erb’),

 require 	 => Vcsrepo[“${install_dir}/osqa-server”]

 }

 file { “${install_dir}/requirements.txt”:

 content 	 => template(‘osqa/requirements.txt’),

 require 	 => Vcsrepo[“${install_dir}/osqa-server”]

 }

We’re templating out “requirements.txt” because the applica-
tion doesn’t ship with one. This further demonstrates how
Puppet can be an effective deployment tool even in less than
ideal circumstances.

The template files are stored as osqa/templates/filename.erb.
You can check out the git repository for puppet-module-osqa if
you would like to see them. (More information is available on
ERB templating is available online at the Puppet Labs website
and elsewhere.)

Next we will install and configure the MySQL server. Thanks
to the MySQL module, this is painless:

class { ‘mysql::server’:

 config_hash => { ‘root_password’ => hiera(‘mysql_root_

password’, ‘changme!’) },

 }

 package { ‘libmysqlclient-dev’:

 ensure => present,

 }

 include mysql::bindings::python

 mysql::db { $db_name:

 user 	 => $db_username,

 password 	 => $db_password,

 grant 	 => [‘all’],

 }

Above we have used the hiera function call. Hiera allows us to
look up data, like a database password above, in an external
datastore. Commonly this datastore is just yaml files. This is
useful because it allows us to separate data from code. Next we

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 8

Deploying a Python App with Puppet

will install the Python virtual environment and install all the
dependencies using pip inside that virtualenv. This is quick,
easy, and simple thanks to the Python module:

class { ‘python’:

 version	 => ‘system’,

 dev	 => true,

 virtualenv	 => true,

 }

 python::virtualenv { “${install_dir}/virtenv-osqa”:

 ensure 	 => present,

 version 	 => ‘system’,

 systempkgs 	 => false,

 distribute 	 => true,

 requirements 	 => “${install_dir}/requirements.txt”,

 owner 	 => $username,

 require 	 => [Vcsrepo[“${install_dir}/osqa-server”],

Class[‘python’], File[“${install_dir}/requirements.txt”]],

 notify 	 => Exec[‘syncdb’],

 }

The last set of resources are what Puppet calls “exec”
resources. In any LAMP stack deployment, commands must be
run for the application to configure the database. Puppet has
the exec resource available to run any piece of shell the system
administrator or developer wants to. Entering the virtual
environment and running Django’s manage.py is simple. The
refreshonly directive coupled with the notify coming from the
virtualenv means that these execs will only run right after the
virtualenv is created, which will only happen on initial con-
figuration, not continuously:

exec { ‘syncdb’:

 cwd 	 => “${install_dir}/osqa-server”,

 provider 	 => shell,

 user 	 => $username,

 command 	 => “. ../virtenv-osqa/bin/activate && yes no |

${install_dir}/virtenv-osqa/bin/python manage.py syncdb --all”,

 refreshonly 	 => true,

 notify 	 => Exec[‘migrate-forum’],

 }

 exec { ‘migrate-forum’:

 cwd 	 => “${install_dir}/osqa-server”,

 provider 	 => shell,

 user 	 => $username,

 command 	 => “. ../virtenv-osqa/bin/activate &&

${install_dir}/virtenv-osqa/bin/python manage.py migrate forum

--fake”,

 refreshonly => true,

With all our resources in place, we need to use another piece of
Puppet syntax to chain them together in the correct way:

 Class[‘python’] -> Python::Virtualenv <| |>

 -> Python::Pip <| |> -> Class[‘mysql::server’]

 -> Mysql::Db[$db_name]

This syntax ensures that the Python class comes first, fol-
lowed by its virtual environment and any pip resources, then
the mysql::server class comes, followed by its MySQL database.
When we try to run manage.py, we are required to have a data-
base online.

With all that code entered, we can run this against a server
with

 $ puppet apply -e ‘class { “osqa”: } ‘

which will run for a while, then we have a functional OSQA
installation up and running under mod_wsgi.

You can also use any of the parameters we allowed for above
with the following syntax:

 $ puppet apply -e ‘class { “osqa”: user => “web-osqa” }’

Or, if your environment already has puppet set up in master/
agent mode, you could just add these class resources to the osqa
server’s node definition.

With that, we have built a simple Puppet module to deploy a
Django web application. We are managing all of the primary
components of the application: database, source code, Apache
configuration, and virtual environment. We are also leverag-
ing Puppet to overcome some of the limitations of the software,
such as creating var and cache directories because the applica-
tion doesn’t create them itself. Puppet modules like this one
can be used to streamline production deployment or to shorten
iterative cycles in development.

References
[1] Puppet: docs.puppetlabs.com

[2] OSQA: http://www.osqa.net/download/

https://www.usenix.org
docs.puppetlabs.com
http://www.osqa.net/download/

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 9

Configuring Your Linux System with the
CFEngine Design Center
D i e g o Z a m b o n i

CFEngine is an efficient, lightweight, and powerful configuration
management tool for computer systems of all kinds. The most recent
version, CFEngine 3.5.2, was released in August 2013. With CFEn-

gine, you can express the desired state of your systems in two main ways:
by writing policy in the CFEngine policy language directly, or by using the
CFEngine Design Center [1], a repository of ready-to-use components called
sketches, which allow you to perform entirely data-driven configuration.
There are sketches for all sorts of tasks, from basic system configuration
to complex cloud deployments. In this article, I will use simple examples to
show you how to perform basic configuration tasks using the Design Center.

Getting Ready
First, you must install CFEngine and the Design Center on your system. Two versions of
CFEngine are available: the open-source version (CFEngine Community) and the com-
mercial version (CFEngine Enterprise). In my examples, I will use the Community version,
which is available as packages for most Linux distributions and can also be downloaded
and compiled from source code [2].

The easiest way to set up a test environment is to use Vagrant [3]. If you have Vagrant
installed, fetch the sample Vagrantfile [4], put it in a directory, run vagrant up, and you
will have a freshly installed Ubuntu 12.04 VM with both CFEngine and the Design Center
ready to use. Then you can skip the rest of this section. If you prefer to do this on your own
machine, or you don’t want to use Vagrant, follow the instructions below.

I will use a fresh Ubuntu 12.04/64bit install, and follow the instructions from https://cfen-
gine.com/cfengine-linux-distros to install CFEngine (command output edited for brevity):

wget -q http://cfengine.com/pub/gpg.key

apt-key add gpg.key

rm gpg.key

echo “deb http://cfengine.com/pub/apt $(lsb_release -cs) main” > \

> /etc/apt/sources.list.d/cfengine-community.list

apt-get -qq update

apt-get -qq install cfengine-community

Selecting previously unselected package cfengine-community.

...

Now CFEngine is installed but not running. For this, we need to bootstrap CFEngine to a
policy server. We will set up our machine as its own policy server, so we need to bootstrap
to its own IP address:

Diego Zamboni is a computer
scientist, consultant, author,
programmer, sysadmin, and
overall geek who works as
a senior security advisor at

CFEngine. He has more than 20 years of
experience in system administration and
security, and has worked in both the applied
and theoretical sides of the computer
science field. He holds a Ph.D. from Purdue
University, and has worked as a sysadmin
at a supercomputer center, as a researcher
at the IBM Zurich Research Lab, and as a
consultant at HP Enterprise Services. Zamboni
is the author of the book “Learning CFEngine
3”, published by O’Reilly Media. He lives in
Queretaro, Mexico with his wife and two
daughters. diego.zamboni@cfengine.com

https://www.usenix.org
diego.zamboni@cfengine.com

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 10

Configuring Your Linux System with the CFEngine Design Center

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 08:00:27:fe:aa:af

 inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0

...

/var/cfengine/bin/cf-agent --bootstrap 10.0.2.15

2013-08-19T22:25:53+0000 notice: Q: “...f-serverd””: 2013-08-

19T22:25:53+0000 notice: Server is starting...

2013-08-19T22:25:53+0000 notice: R: This host assumes the

role of policy server

2013-08-19T22:25:53+0000 notice: R: Updated local policy from

policy server

2013-08-19T22:25:53+0000 notice: R: Started the server

2013-08-19T22:25:53+0000 notice: R: Started the scheduler

2013-08-19T22:25:53+0000 notice: Bootstrap to ‘10.0.2.15’

completed successfully!

Now CFEngine is running, which you can verify by looking at
the running processes:

ps ax | grep cf-

 1869 ? Ss 0:00 /var/cfengine/bin/cf-execd

 1875 ? Ss 0:00 /var/cfengine/bin/cf-serverd

 1889 ? Ss 0:00 /var/cfengine/bin/cf-monitord

From now on, the CFEngine command cf-agent will run every
five minutes to execute its policies. In this article, I will not go
into more detail about how CFEngine works, but rather show
you how you can use the CFEngine Design Center to config-
ure your system without having to write CFEngine policies.
The Design Center is hosted on GitHub [5], and its repository
includes both the sketches and the tools used to manage them.
We will clone the repository using git:

apt-get -qq install git libterm-readline-gnu-perl

cd /var/cfengine/

git clone https://github.com/cfengine/design-center

Cloning into ‘design-center’...

...

Using the CFEngine Design Center
Now we are ready to start using the Design Center. From the
command line, the cf-sketch tool is the main way to manage
Design Center sketches on your systems. CFEngine Enterprise
includes a GUI for the Design Center, but for now we will stick
to the command-line tools.

First, we need to run cf-sketch, which will put us in an interac-
tive prompt:

cd /var/cfengine/design-center/tools/cf-sketch/

./cf-sketch.pl

Welcome to cf-sketch version 3.5.0b1.

CFEngine AS, 2013.

Enter any command to cf-sketch, use ‘help’ for help, or ‘quit’ or

‘^D’ to quit.

cf-sketch> _

You can type help at this prompt to see all the commands avail-
able. In particular, you can type search to produce a listing of
all the sketches available in the repository. For now, we will
dive straight into the configuration of our system.

Let’s look at some of the system configuration sketches avail-
able in the Design Center:

cf-sketch> search system

The following sketches match your query:

System::Logrotate Manage log rotation settings

System::Routes Manage system routes

System::Sudoers Sets defaults and user permissions in the

sudoers fileSystem::Syslog Configures syslog

System::access Manage access.conf values

System::config_resolver Configure DNS resolver

System::cron Manage crontab and /etc/cron.d contents

System::etc_hosts Manage /etc/hosts

System::motd Configure the Message of the Day

System::set_hostname Set system hostname. Domain name is also

set on Mac, Red Hat and and Gentoo derived distributions (but

not Debian).

System::sysctl Manage sysctl values

System::tzconfig Manage system timezone configuration

First we will configure the system timezone. For this, we will
use the System::tzconfig sketch. We can use the info command
to get detailed information about the sketch, including the
parameters it uses:

cf-sketch> info -v System::tzconfig

The following sketches match your query:

Sketch System::tzconfig

Description: Manage system timezone configuration

Authors: Nick Anderson <nick@cmdln.org>, Ted Zlatanov <tzz@

lifelogs.com>

Version: 1.2

License: MIT

Tags: cfdc

Installed: No

Parameters:

 For bundle set

 timezone: string

 zoneinfo: string

Return values:

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 11

Configuring Your Linux System with the CFEngine Design Center

 Bundle set: [timezone]

The first step is to install it:

cf-sketch> install System::tzconfig

Sketch System::tzconfig installed under /var/cfengine/

masterfiles/sketches.

We can verify that the sketch has been installed using the list
command. Note that a couple of library sketches were automat-
ically installed as dependencies of System::tzconfig:

cf-sketch> list

The following sketches are installed:

CFEngine::dclib Design Center standard library

CFEngine::stdlib The portions of the CFEngine standard library

(also known as COPBL) that are compatible with 3.4.0 releases

System::tzconfig Manage system timezone configuration

Next, we need to define a parameter set for our sketch, which
contains the values of the parameters needed by the sketch
(enter your own timezone instead of the one shown here):

cf-sketch> define params System::tzconfig

Please enter a name for the new parameter set (default:

System::tzconfig-set-000): tzconfig1

Querying configuration for parameter set ‘tzconfig1’ for bundle

‘set’.

Please enter parameter timezone.

 (enter STOP to cancel)

timezone : Mexico/General

Please enter parameter zoneinfo.

 (enter STOP to cancel)

zoneinfo : /usr/share/zoneinfo

Defining parameter set ‘tzconfig1’ with the entered data.

Parameter set tzconfig1 successfully defined.

Now we need to define an environment, which is short for “set
of conditions under which a sketch will be executed with cer-
tain parameters”. The conditions are expressed as CFEngine
class expressions, so they can represent arbitrary conditions
on the system, either automatically detected by CFEngine or
set by your own CFEngine policies. For our example, we will
activate our sketches in all Linux machines, so we will use the
linux class, which is automatically set by CFEngine when it
runs on a Linux host:

cf-sketch> define env

Please enter a name for the new environment: env_linux

I will now prompt you for the conditions for activation, test,

and verbose mode

that will be associated with environment ‘env_linux’. Please

enter them as

CFEngine class expressions.

Please enter the activation condition: linux

Please enter the test condition: !any

Please enter the verbose condition: !any

Environment ‘env_linux’ successfully defined.

Now all we need to do is activate our sketch, telling it that we
want to run it with the parameter set we defined, on all Linux
machines:

cf-sketch> activate System::tzconfig tzconfig1 env_linux

Using generated activation ID ‘System::tzconfig-1’.

Using existing parameter definition ‘tzconfig1’.

Using existing environment ‘env_linux’.

Activating sketch System::tzconfig with parameters tzconfig1.

Note that both parameter sets and environments have names,
and all that the activate command does is “tie together” a
sketch, a parameter set, and an environment.

After we have activated a sketch, we need to deploy and
execute it, which can be done as a one-time operation using
the run command (mostly for testing your parameters). Note
the change in the system timezone before and after the sketch
executes:

date

Tue Aug 20 06:40:29 UTC 2013

#./cf-sketch.pl

cf-sketch> list activations

The following activations are defined:

Activation ID System::tzconfig-1

 Sketch: System::tzconfig

 Parameter sets: [tzconfig1]

 Environment: ‘env_linux’

cf-sketch> run

Runfile /var/cfengine/masterfiles/cf-sketch-runfile-standalone.

cf successfully generated.

Now executing the runfile with: /usr/local/sbin/cf-agent -f /

var/cfengine/masterfiles/cf-sketch-runfile-standalone.cf

2013-08-20T06:40:47+0000 notice: R: System timezone updated

to Mexico/General

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 12

Configuring Your Linux System with the CFEngine Design Center

cf-sketch>

date

Tue Aug 20 01:40:51 CDT 2013

Of course, you don’t want to run the sketches manually, when
the purpose of CFEngine is to keep your systems automatically
configured. To automate the process, we must incorporate the
execution of the sketches into the periodic execution of CFEn-
gine by using the deploy command:

cf-sketch> deploy

Runfile /var/cfengine/masterfiles/cf-sketch-runfile.cf

successfully generated.

In the current release of CFEngine, we must make one change
to the included CFEngine policy files in order for the sketches
to be properly loaded. Open the /var/cfengine/masterfiles/
promises.cf file and find this section:

 # COPBL/Custom libraries. Eventually this should use

wildcards.

 @(cfengine_stdlib.inputs),

 # Design Center

 # MARKER FOR CF-SKETCH INPUT INSERTION

 “cf-sketch-runfile.cf”,

Because sketches load their own libraries, we must comment
out the line that loads the CFEngine standard library and add
a line that loads sketch-required files. The end result looks like
this:

 # COPBL/Custom libraries. Eventually this should use

wildcards.

 # @(cfengine_stdlib.inputs),

 # Design Center

 # MARKER FOR CF-SKETCH INPUT INSERTION

 “cf-sketch-runfile.cf”,

 @(cfsketch_g.inputs),

Now the sketch we activated will be executed every five
minutes to check whether anything needs to be fixed. If you
manually change the timezone of your system, you will notice
that within five minutes it will change back to the one you
configured in the sketch.

We will now configure two additional sketches for basic
system configuration tasks, following the same install-param-
eters-activate sequence we already saw. First, we will use
CFEngine to maintain our /etc/motd file:

cf-sketch> install System::motd

Sketch System::motd installed under /var/cfengine/masterfiles/

sketches.

cf-sketch> define params System::motd

Please enter a name for the new parameter set (default:

System::motd-entry-000): motd1

Querying configuration for parameter set ‘motd1’ for bundle

‘entry’.

Please enter parameter motd (Message of the Day (aka motd)).

 (enter STOP to cancel)

motd : This sytem is managed by CFEngine. Go away!

Please enter parameter motd_path (Location of the primary,

often only, MotD file).

 (enter STOP to cancel)

motd_path [/etc/motd]: /etc/motd

Please enter parameter prepend_command (Command output to

prepend to MotD).

 (enter STOP to cancel)

prepend_command [/bin/uname -snrvm]: /bin/uname -snrvm

Please enter parameter dynamic_path (Location of the dynamic

part of the MotD file).

 (enter STOP to cancel)

dynamic_path :

Please enter parameter symlink_path (Location of the symlink to

the motd file).

 (enter STOP to cancel)

symlink_path :

Defining parameter set ‘motd1’ with the entered data.

Parameter set motd1 successfully defined.

cf-sketch> activate System::motd motd1 env_linux

Using generated activation ID ‘System::motd-1’.

Using existing parameter definition ‘motd1’.

Using existing environment ‘env_linux’.

Activating sketch System::motd with parameters motd1.

Note that we do not need to define additional environments
for these sketches; they are being activated using the same
env_linux environment we prepared previously.

We will also use CFEngine to maintain some security-related
parameters in the system’s sshd configuration:

cf-sketch> install Security::SSH

Sketch Security::SSH installed under /var/cfengine/masterfiles/

sketches.

cf-sketch> define params Security::SSH

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 13

Configuring Your Linux System with the CFEngine Design Center

Please enter a name for the new parameter set (default:

Security::SSH-sshd-000): ssh1

Querying configuration for parameter set ‘ssh1’ for bundle

‘sshd’.

Please enter parameter params.

 (enter STOP to cancel)

Next key (Enter to finish): PermitRootLogin

params[PermitRootLogin]: no

Next key (Enter to finish): X11Forwarding

params[X11Forwarding]: no

Next key (Enter to finish):

Defining parameter set ‘ssh1’ with the entered data.

Parameter set ssh1 successfully defined.

cf-sketch> activate Security::SSH ssh1 env_linux

Using generated activation ID ‘Security::SSH-1’.

Using existing parameter definition ‘ssh1’.

Using existing environment ‘env_linux’.

Activating sketch Security::SSH with parameters ssh1.

Before those sketches take any effect, they must be deployed:

cf-sketch> deploy

Runfile /var/cfengine/masterfiles/cf-sketch-runfile.cf

successfully generated.

Within a few minutes, you should see those changes reflected
in your system:

cat /etc/motd

This sytem is managed by CFEngine. Go away!

egrep ‘PermitRoot|X11For’ /etc/ssh/sshd_config

PermitRootLogin no

X11Forwarding no

We are done! Your system automatically will be maintained
according to the criteria you set. Try modifying any of these
settings to see how CFEngine automatically brings them back
into compliance. To get a better idea of all the things you can do
with the Design Center, I encourage you to explore the available
sketches.

Conclusion
In this article, I have only touched on the surface of what the
Design Center can do. To learn more about the Design Cen-
ter’s capabilities and how to contribute new sketches, read the
CFEngine documentation at http://cfengine.com/docs.

References
[1] CFEngine Design Center: http://cfengine.com/
cfengine-design-center/

[2] Download CFEngine: https://cfengine.com/downloads.

[3] Vagrant: http://www.vagrantup.com/

[4] Vagrantfile: https://raw.github.com/cfengine/
vagrant-cfengine-provisioner/master/sample/
community_vagrant-1.2/Vagrantfile

[5] CFEngine Design Center on GitHub: https://github.com/
cfengine/design-center

https://www.usenix.org
http://cfengine.com/cfengine-design-center/
http://cfengine.com/cfengine-design-center/
https://cfengine.com/downloads
http://www.vagrantup.com/
https://raw.github.com/cfengine/vagrant-cfengine-provisioner/master/sample/community_vagrant-1.2/Vagrantfile
https://raw.github.com/cfengine/vagrant-cfengine-provisioner/master/sample/community_vagrant-1.2/Vagrantfile
https://raw.github.com/cfengine/vagrant-cfengine-provisioner/master/sample/community_vagrant-1.2/Vagrantfile
https://github.com/cfengine/design-center
https://github.com/cfengine/design-center

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 14

The Slow Winter
J a m e s M i c k e n s

A ccording to my dad, flying in airplanes used to be fun. You could
smoke on the plane, and smoking was actually good for you. Every-
body was attractive, and there were no fees for anything, and there

was so much legroom that you could orient your body parts in arbitrary and
profane directions without bothering anyone, and you could eat caviar and
manatee steak as you were showered with piles of money that were person-
ally distributed by JFK and The Beach Boys. Times were good, assuming that
you were a white man in the advertising business, WHICH MY FATHER
WAS NOT SO PERHAPS I SHOULD ASK HIM SOME FOLLOW-UP
QUESTIONS BUT I DIGRESS. The point is that flying in airplanes used
to be fun, but now it resembles a dystopian bin-packing problem in which
humans, carry-on luggage, and five dollar peanut bags compete for real estate
while crying children materialize from the ether and make obscure demands
in unintelligible, Wookie-like languages while you fantasize about who you
won’t be helping when the oxygen masks descend.

I think that it used to be fun to be a hardware architect. Anything that you invented would
be amazing, and the laws of physics were actively trying to help you succeed. Your friend
would say, “I wish that we could predict branches more accurately,” and you’d think,
“maybe we can leverage three bits of state per branch to implement a simple saturating
counter,” and you’d laugh and declare that such a stupid scheme would never work, but then
you’d test it and it would be 94% accurate, and the branches would wake up the next morn-
ing and read their newspapers and the headlines would say OUR WORLD HAS BEEN
SET ON FIRE. You’d give your buddy a high-five and go celebrate at the bar, and then you’d
think, “I wonder if we can make branch predictors even more accurate,” and the next day
you’d start XOR’ing the branch’s PC address with a shift register containing the branch’s
recent branching history, because in those days, you could XOR anything with anything
and get something useful, and you test the new branch predictor, and now you’re up to
96% accuracy, and the branches call you on the phone and say OK, WE GET IT, YOU DO
NOT LIKE BRANCHES, but the phone call goes to your voicemail because you’re too busy
driving the speed boats and wearing the monocles that you purchased after your promotion
at work. You go to work hung-over, and you realize that, during a drunken conference call,
you told your boss that your processor has 32 registers when it only has 8, but then you realize
THAT YOU CAN TOTALLY LIE ABOUT THE NUMBER OF PHYSICAL REGISTERS,
and you invent a crazy hardware mapping scheme from virtual registers to physical ones,
and at this point, you start seducing the spouses of the compiler team, because it’s pretty
clear that compilers are a thing of the past, and the next generation of processors will run
English-level pseudocode directly. Of course, pride precedes the fall, and at some point,
you realize that to implement aggressive out-of-order execution, you need to fit more
transistors into the same die size, but then a material science guy pops out of a birthday

James Mickens is a researcher
in the Distributed Systems
group at Microsoft’s Redmond
lab. His current research
focuses on web applications,

with an emphasis on the design of JavaScript
frameworks that allow developers to
diagnose and fix bugs in widely deployed
web applications. James also works on fast,
scalable storage systems for datacenters.
James received his PhD in computer science
from the University of Michigan, and a
bachelor’s degree in computer science from
Georgia Tech. mickens@microsoft.com

https://www.usenix.org
mickens@microsoft.com

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 15

The Slow Winter

cake and says YEAH WE CAN DO THAT, and by now, you’re
touring with Aerosmith and throwing Matisse paintings from
hotel room windows, because when you order two Matisse
paintings from room service and you get three, that equation
is going to be balanced. It all goes so well, and the party keeps
getting better. When you retire in 2003, your face is wrinkled
from all of the smiles, and even though you’ve been sued by sev-
eral pedestrians who suddenly acquired rare paintings as hats,
you go out on top, the master of your domain. You look at your son
John, who just joined Intel, and you rest well at night, knowing
that he can look forward to a pliant universe and an easy life.

Unfortunately for John, the branches made a pact with Satan
and quantum mechanics during a midnight screening of
“Weekend at Bernie’s II.” In exchange for their last remaining
bits of entropy, the branches cast evil spells on future genera-
tions of processors. Those evil spells had names like “scaling-
induced voltage leaks” and “increasing levels of waste heat”
and “Pauly Shore, who is only loosely connected to computer
architecture, but who will continue to produce a new movie
every three years until he sublimates into an empty bag of
Cheetos and a pair of those running shoes that have individual
toes and that make you look like you received a foot transplant
from a Hobbit, Sasquatch, or an infertile Hobbit/Sasquatch
hybrid.” Once again, I digress. The point is that the branches,
those vanquished foes from long ago, would have the last laugh.

When John went to work in 2003, he had an indomitable spirit
and a love for danger, reminding people of a less attractive
Ernest Hemingway or an equivalently attractive Winston
Churchill. As a child in 1977, John had met Gordon Moore;
Gordon had pulled a quarter from behind John’s ear and then
proclaimed that he would pull twice as many quarters from
John’s ear every 18 months. Moore, of course, was an incorri-
gible liar and tormentor of youths, and he never pulled another
quarter from John’s ear again, having immediately fled the
scene while yelling that Hong Kong will always be a British
territory, and nobody will ever pay $8 for a Mocha Frappuccino,
and a variety of other things that seemed like universal laws to
people at the time, but were actually just arbitrary nouns and
adjectives that Moore had scrawled on a napkin earlier that
morning. Regardless, John was changed forever, and when he
grew up and became a hardware architect, he poured all of his
genius into making transistors smaller and more efficient. For
a while, John’s efforts were rewarded with ever-faster CPUs,
but at a certain point, the transistors became so small that they
started to misbehave. They randomly switched states; they
leaked voltage; they fell prey to the seductive whims of cosmic
rays that, unlike the cosmic rays in comic books, did not turn
you into a superhero, but instead made your transistors unreli-
able and shiftless, like a surly teenager who is told to clean his

room and who will occasionally just spray his bed with Lysol
and declare victory.

As the transistors became increasingly unpredictable, the
foundations of John’s world began to crumble. So, John did
what any reasonable person would do: he cloaked himself in a
wall of denial and acted like nothing had happened. “Making
processors faster is increasingly difficult,” John thought, “but
maybe people won’t notice if I give them more processors.”
This, of course, was a variant of the notorious Zubotov Gambit,
named after the Soviet-era car manufacturer who abandoned
its attempts to make its cars not explode, and instead offered
customers two Zubotovs for the price of one, under the assump-
tion that having two occasionally combustible items will
distract you from the fact that both items are still occasionally
combustible. John quietly began to harness a similar strategy,
telling his marketing team to deemphasize their processors’
speed, and emphasize their level of parallelism.

At first, John’s processors flew off the shelves. Indeed, who
wouldn’t want an octavo-core machine with 73 virtual
hyper-threads per physical processor? Alan Greenspan’s loose
core policy and weak parallelism regulation were declared
a resounding success, and John sipped on champagne as he
watched the money roll in. However, a bubble is born so that a
bubble can pop, and this one was no different. John’s massive
parallelism strategy assumed that lay people use their com-
puters to simulate hurricanes, decode monkey genomes, and
otherwise multiply vast, unfathomably dimensioned matrices
in a desperate attempt to unlock eigenvectors whose desolate
grandeur could only be imagined by Edgar Allen Poe.

Of course, lay people do not actually spend their time trying
to invert massive hash values while rendering nine copies of
the Avatar planet in 1080p. Lay people use their computers
for precisely ten things, none of which involve massive com-
putational parallelism, and seven of which involve procuring
a vast menagerie of pornographic data and then curating that
data using a variety of fairly obvious management techniques,
like the creation of a folder called “Work Stuff,” which con-
tains an inner folder called “More Work Stuff,” where “More
Work Stuff” contains a series of ostensible documentaries that
describe the economic interactions between people who don’t
have enough money to pay for pizza and people who aren’t too
bothered by that fact. Thus, when John said “imagine a world
in which you’re constantly executing millions of parallel tasks,”
it was equivalent to saying “imagine a world that you do not and
will never live in.” Indeed, a world in which you’re constantly
simulating nuclear explosions while rendering massive 3-D
environments is a world that’s been taken over by members of
a high school A.V. club. The members of a high school A.V. club

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 16

The Slow Winter

lack the chops to establish a global dictatorship, if only because
doing such a thing would require them to reduce their visits
to Renaissance festivals, and those turkey legs need help to be
consumed in the style of a 15th century Italian aristocrat.

John was terrified by the collapse of the parallelism bubble,
and he quickly discarded his plans for a 743-core processor
that was dubbed The Hydra of Destiny and whose abstract
Platonic ideal was briefly the third-best chess player in Gary,
Indiana. Clutching a bottle of whiskey in one hand and a shot-
gun in the other, John scoured the research literature for ideas
that might save his dreams of infinite scaling. He discovered
several papers that described software-assisted hardware
recovery. The basic idea was simple: if hardware suffers more
transient failures as it gets smaller, why not allow software to
detect erroneous computations and re-execute them? This idea
seemed promising until John realized THAT IT WAS THE
WORST IDEA EVER. Modern software barely works when the
hardware is correct, so relying on software to correct hardware
errors is like asking Godzilla to prevent Mega-Godzilla from
terrorizing Japan. THIS DOES NOT LEAD TO RISING PROP-
ERTY VALUES IN TOKYO. It’s better to stop scaling your
transistors and avoid playing with monsters in the first place,
instead of devising an elaborate series of monster checks-
and-balances and then hoping that the monsters don’t do what
monsters are always going to do because if they didn’t do those
things, they’d be called dandelions or puppy hugs.

At this point, John was living under a bridge and wearing a
bird’s nest as a hat. Despite his tragic sartorial collaborations
with the avian world, John still believed that somehow, some
way, he could continue to make his transistors smaller. Perhaps
the processor could run multiple copies of each program, com-
paring the results to detect errors? Perhaps a new video codec
could tolerate persistently hateful levels of hardware error?
All of these techniques could be implemented. However, John
slowly realized that these solutions were just things that he
could do, and inventing “a thing that you could do” is a low bar
for human achievement. If I were walking past your house and
I saw that it was on fire, I could try to put out the fire by find-
ing a dingo and then teaching it how to speak Spanish. That’s
certainly a thing that I could do. However, when you arrived at
your erstwhile house and found a pile of heirloom ashes, me,
and a dingo with a chewed-up Rosetta Stone box, you would
be less than pleased, despite my protestations that negative
scientific results are useful and I had just proven that Spanish-
illiterate dingoes cannot extinguish fires using mind power.

It was at this moment, when John had hit the bottom, that he
discovered religion.

John began to attend The Church of the Impending Power
Catastrophe. He sat in the pew and he heard the cautionary

tales, and he was afraid. John learned about the new hyper-
threaded processor from AMD that ran so hot that it burned
a hole to the center of the earth, yelled “I’ve come to rejoin my
people!”, discovered that magma people are extremely bigoted
against processor people, and then created the Processor
Liberation Front to wage a decades-long, hilariously futile
War to Burn the Intrinsically OK-With-Being-Burnt Magma
People. John learned about the rumored Intel Septium chip,
a chip whose prototype had been turned on exactly once, and
which had leaked so much voltage that it had transformed
into a young Linda Blair and demanded an exorcism before it
embarked on a series of poor career moves that culminated
in an inevitable spokesperson role for PETA. The future was
bleak, and John knew that he had to fight it. So, John repented
his addiction to scaling, and he rededicated his life to reduc-
ing the power consumption of CPUs. It was a hard path, and a
lonely path, but John could find no other way. Formerly the life
of the party, John now resembled the scraggly, one-eyed wizard
in a fantasy novel who constantly warns the protagonist about
the variety of things that can lead to monocular bescraggle-
ment. At team meetings, whenever someone proposed a new
hardware feature, John would yell “THE MAGMA PEOPLE
ARE WAITING FOR OUR MISTAKES.” He would then throw
a coffee cup at the speaker and say that adding new hardware
features would require each processor to be connected to a
dedicated coal plant in West Virginia. John’s coworkers even-
tually understood his wisdom, and their need to wear coffee-
resistant indoor ponchos lessened with time. Every evening,
after John left work, he went to the bus stop and distributed
power literature to strangers, telling them to abandon transis-
tor scaling and save their souls. Standing next to John, another
man wore a sandwich board that said that the Federal Reserve
was using fluorinated water to hide the fact that we never
landed on the moon. The sandwich board required no transis-
tors at all. It made John smile.

When John comes home for the holidays, you’re glad that he’s
back, but you miss the old twinkle in his eye. Your thoughts
wander to your own glory days thirty years ago, when Aero-
smith mistook young John for a large Xanax tablet and tried
to trade him for a surface-to-air missile that could be used
against anti-classic rock regimes. Oh, how you laughed! The
subsequent visit by Child Protection Services was less amus-
ing, but that was the way that hardware architects lived: work-
ing hard, partying hard, and occasionally waking up in Tijuana
to discover that your left kidney is missing and your toddler has
been shipped to a Columbian arms smuggler. It was crazy, but
you wouldn’t change a thing. Your generation had lived so many
dreams, and slain so many foes.

Today, if a person uses a desktop or laptop, she is justifiably
angry if she discovers that her machine is doing a non-trivial

https://www.usenix.org

 | SEPTEMBER 2013 | WWW.usenix.org	 PAGE 17

The Slow Winter

amount of work. If her hard disk is active for more than a sec-
ond per hour, or if her CPU utilization goes above 4%, she either
has a computer virus, or she made the disastrous decision to
run a Java program. Either way, it’s not your fault: you brought
the fire down from Olympus, and the mortals do with it what
they will. But now, all the easy giants were dead, and John was
left to fight the ghosts that Schrödinger had left behind. “John,”
you say as you pour some eggnog, “did I ever tell you how I
implemented an out-of-order pipeline with David Hasselhoff
and Hulk Hogan’s moustache colorist?” You are suddenly aware
that you left your poncho in the other room.

https://www.usenix.org

	1309_01_toc
	1309_02-04_hinkle
	1309_05-08_krum
	1309_09-13_zamboni
	1309_14-17_mickens

