
Say Goodbye to Off-heap Caches!
On-heap Caches Using Memory-Mapped I/O

Iacovos G. Kolokasis∗, Anastasios Papagiannis∗, Polyvios Pratikakis∗, and Angelos Bilas∗

Institute of Computer Science (ICS), Foundation for Research and Technology – Hellas (FORTH), Greece
{kolokasis, apapag, polyvios, bilas}@ics.forth.gr

Foivos Zakkak†

Red Hat, Inc.
fzakkak@redhat.com

Abstract
Many analytics computations are dominated by iterative pro-
cessing stages, executed until a convergence condition is met.
To accelerate such workloads while keeping up with the expo-
nential growth of data and the slow scaling of DRAM capacity,
Spark employs off-memory caching of intermediate results.
However, off-heap caching requires the serialization and de-
serialization (serdes) of data, which add significant overhead
especially with growing datasets.

This paper proposes TeraCache, an extension of the Spark
data cache that avoids the need of serdes by keeping all cached
data on-heap but off-memory, using memory-mapped I/O
(mmio). To achieve this, TeraCache extends the original JVM
heap with a managed heap that resides on a memory-mapped
fast storage device and is exclusively used for cached data.
Preliminary results show that the TeraCache prototype can
speed up Machine Learning (ML) workloads that cache inter-
mediate results by up to 37% compared to the state-of-the-art
serdes approach.

1 Introduction

Analytics applications often use ML [16] algorithms to pro-
cess massive amounts of data. Such applications iterate over
one or more computation steps until a convergence condition
is met. To speed up such workloads, Spark [35] caches large
intermediate results of complex computation pipelines and
reuses them in each step. Intermediate results are stored as
Resilient Distributed Datasets (RDDs) [34] in an LRU cache.

Figure 1(a) shows the performance impact of RDD caching
for three well-known ML workloads: Linear Regression (LR),
Logistic Regression (LgR), and Support-Vector Machines
(SVM). All workloads run with a 64GB dataset and a single
Spark executor using 32GB DRAM and 30 CPU cores (we
report the average of three runs; deviation was minimal and
is omitted). Caching RDDs in both memory and disk (hybrid)

*Also with the Department of Computer Science, University of Crete.
†Work performed while employed by The University of Manchester.

Figure 1: (a) Hybrid caching outperforms on-demand recom-
putation. (b) Disk-only caching incurs high serdes overhead
and lower GC time, whereas hybrid caching exhibits the re-
verse behavior.

improves performance up to 90%, compared to recomputing
intermediate results on demand at every stage.

DRAM-only caching is not a long-term solution, as the
amount of data generated and processed increases at a high
rate [26, 27], while DRAM scaling reaches its limits [13,
17, 20]. Cached data increasingly exceed physical DRAM
size, making workloads prone to recomputing intermediate
results at each step. Therefore, current practice is to use fast
storage devices to increase Spark’s effective cache size for
intermediate RDDs [37]. NAND flash storage devices such
as SSD and NVMe block devices [1], as well as NVMs, have
higher density and capacity than DRAM [21, 25]. SSD and
NVMe devices scale to terabytes per PCIe slot [19] at a lower
cost [8], while DRAM scales to GBs per DIMM. Moreover,
NVMe block devices provide higher capacity at a lower cost
compared to NVM, while still having access latency in the
order of few µs and perform hundreds of thousands IOPS for
both reads and writes.

During execution, Spark initially places RDDs in the on-
heap (DRAM) cache. If an RDD block does not fit in memory,
it is serialized to the off-heap (disk) cache and its memory
is collected during the next garbage collection (GC) cycle.
Similarly, if there is not enough memory, the LRU cache evicts



older entries to the off-heap cache. When Spark refers to an
RDD that is stored off-heap, it deserializes the serialized block
from disk back into memory. Every block is serialized at most
once, since RDDs are immutable. However, deserialization
can occur multiple times per block in each iterative stage.

Today, despite outperforming the recomputation strategy,
caching in off-heap device caches incurs high serdes over-
head. According to Zhang et al. [36], serdes rather than disk
I/O dominates overhead. Figure 1(b) shows the performance
impact of off-heap RDD caches on LR, LgR, and SVM, when
storing RDDs only off-heap (disk). Note the large impact of
serdes overhead with off-heap caching. Serdes accounts for
27% on average of total execution time using only disk stor-
age. Deserialization accounts for 80%-90% of the total serdes
overhead because the workload retrieves immutable cached
RDDs from the device in every iteration. Serdes overhead
becomes worse as storage device speed improves and the gap
to CPU and memory performance narrows down. The total
execution time also increases in the case of disk-only caching,
mainly due to reduced parallelism and idle CPU time, as disk
throughput cannot keep 30 CPU cores at full load.

Using an on-heap cache (DRAM) together with an off-heap
cache (disk) reduces serdes cost, but it also incurs significant
GC overhead. Figure 1(b) shows the performance impact of
storing RDDs in a hybrid cache, both on-heap (DRAM) and
off-heap (disk), as is currently common practice. Using a rel-
atively large on-heap cache (Spark reserves 60% of the heap
as cache), serdes overhead decreases considerably, by 20%
on average, by keeping some RDDs in memory compared
to storing them exclusively on disk. However, such a large
on-heap cache increases GC time between 13x (SVM) and
36x (LgR), compared to disk-only caching. Cached RDDs
are initially placed in the heap, resulting in a higher ratio of
long-lived objects to short-live objects. Hence, GC consumes
more time marking live objects in the JVM heap [9, 32] and
ends up reclaiming a smaller percentage of the heap, since a
big portion is occupied by cached RDDs. In essence, Spark
uses the DRAM-only JVM heap both for execution and cache
memory. This can lead to unpredictable performance or even
failures, because caching large data causes extra GC pressure
during execution time.

In this work we argue that RDD caching should be per-
formed only in a large, managed, on-heap cache, in a part
of the heap that is memory-mapped onto a fast storage de-
vice and is not garbage collected. TeraCache divides the JVM
heap into an execution and a cache part, locating the execution
heap solely in DRAM and the cache part in a DRAM-mapped
block device. This inherently eliminates serdes and all asso-
ciated overheads, prevents GC on cached data, and is inline
with device technology trends and server power limitations.

Next, we observe a trade-off on how DRAM should be di-
vided between execution and cache memory in Spark. Clearly,
the execution part of the heap should use enough DRAM to
not cause GC pressure during task execution. Conversely, the

more DRAM used the cache heap, the faster the access to the
cached data. We propose a design where the JVM monitors
memory pressure for execution and caching, and dynamically
adjusts the use of DRAM between the two parts.

Our approach, TeraCache, is a co-design approach for on-
heap RDD caching over memory-mapped fast storage devices.
TeraCache spans the Spark cache, JVM memory management
and GC, and mmio. The main benefits of TeraCache are:

• It removes the need for serdes by caching only in a large
memory-mapped heap, thus, allowing the JVM to access
cached data directly using load/store operations.

• It reduces the frequency and length of GC cycles, despite
keeping cached RDDs in the heap, by reclaiming RDD
cached objects separately from the rest of the JVM heap.

• It dynamically adjusts the DRAM used for mmio and exe-
cution heap, to balance execution speed and I/O overhead.

We implement an early prototype of TeraCache that tar-
gets caching in Spark and investigate the dynamic resizing of
DRAM between the two parts of the heap, evaluating its ef-
fectiveness on iterative ML workloads. Our evaluation shows
performance improvement by up to 37% compared to the
current state-of-the-art hybrid approach.

2 TeraCache: Caching Over a Device Heap

Spark consists of one driver and multiple executor processes.
The driver is the main process run by Spark users, which
generates all tasks, while the executors are responsible for
executing tasks of the driver. Figure 2(a) shows how Spark
divides executor memory (top layer) into two logical parts:
(1) execution memory, for storing temporary data during com-
putation and (2) storage memory, for caching intermediate
RDDs in an LRU cache. Each executor runs in a JVM instance
and allocates memory from the JVM heap, which resides in
DRAM. When an RDD does not fit in storage memory it gets
serialized [2] and moved to disk.

Our work takes advantage of this dual use of executor mem-
ory for computation and caching. We physically partition the
JVM heap to serve these two roles. Then, we map each part
of the JVM Heap to specific resources in the memory hierar-
chy, as follows (Figure 2(b)): (1) a JVM Heap (H1) allocated
exclusively on DRAM (DR1) and which can be divided into
generations [14], e.g., New and Old; and (2) a custom man-
aged heap (TeraCache Heap) that contains all cached RDDs
and its size is limited by device capacity (SC).

The memory mappings for pages used by mmap reside in
the remaining part of DRAM (DR2). SDR1 and SDR2 are dy-
namically adjusted by TeraCache using an adaptive policy
at run-time. To do this, TeraCache requires a number of ex-
tensions in the Spark Block Manager and the JVM garbage
collector, as described below.



Figure 2: (a) Off-memory caching via serdes. (b) TeraCache, on-heap RDD cache over a memory-mapped fast storage device
SDR1 +SDR2 = SDRAM (SDRAM=DRAM size, SDR1=DR1 size, SDR2=DR2 size, SC=Capacity of fast storage device).

Figure 3: LgR on HDD vs NVMe SSD storage devices.

2.1 Design Challenges

TeraCache heap allocation using mmap on NVMe is prac-
tical: We modify the JVM to allocate an additional heap,
memory-mapped onto a fast storage device, e.g., NAND-Flash
SSD or NVMe, using Linux mmap [10]. Fast SSDs and NVMe
devices, as opposed to HDDs, are amenable to mmio, due
to the characteristics of the device and the access patterns
produced. Figure 3 (left) shows the performance of LgR on
HDD [6] and NVMe [3], for both serdes and mmap. In both
cases we use a 18GB dataset and a single Spark executor using
8GB DRAM and 30 cores. The actual working set that needs
to be cached is 10x the DRAM cache size. mmap produces
small —due to the small (4KB) page size— and relatively
random I/Os compared to serdes, as shown in Figure 3 (right),
which shows the average request size. HDDs do not perform
well for this access pattern. Serdes with 3x larger request size
is more than 3x better than mmap, despite the high serdes
CPU overhead. However, the NVMe achieves high through-
put and low latency for small request sizes regardless of the
access pattern [22], resulting in mmap performing 36% better
compared to serdes. We believe that using an optimized mmio
path, such as FastMap [23], can further improve performance.

Another way to grow the JVM heap over a fast storage
device to avoid serdes, would be to use the OS virtual memory
system use the NVMe as swap space [10]. Although this
would enable storing very large JVM heaps in an NVMe, it
cannot be used to target solely the RDD cache objects, and
cannot avoid garbage collection of the resulting large heap. As
TeraCache uses two separate heaps for execution and caching,
in order to explicitly avoid GC in the cache, mmap is a better

fitting mechanism to place the caching heap on the storage
device. Figure 4(a) shows that being able to maintain separate
heaps for the execution and caching parts of the heap, strictly
use the NVMe for caching, and avoid GC in the cache, are all
vital to performance. TeraCache yields up to 2x improvement
compared to simply swapping a large, yet garbage-collected,
single JVM heap onto the device.
TeraCache heap management avoids costly GC: Since the
JVM is unaware of execution–storage memory separation, all
objects get allocated on the JVM heap (middle layer of Fig-
ure 2(a)). This increases GC time, for two reasons: (1) cached
RDDs are long-lived collection of objects and are managed
by explicit persist and unpersist actions of Spark applications.
Therefore, they rarely get collected and the garbage collector
spends a significant part of time traversing live objects; and
(2) more GC cycles are required to reclaim enough space in
execution memory, since each GC cycle is able to free little
memory due to long-lived cached RDDs. As the cached ob-
jects’ life-time is clearly defined by how long they remain
in the Spark cache, we can avoid GCs in TeraCache. Thus,
our design uses a custom allocator to manage TeraCache and
reduces object reclamation cost, as follows.

We augment the garbage collector and make it aware of
the differences between H1 and TeraCache. H1 is treated as a
standard JVM heap and is collected using standard GC algo-
rithms. TeraCache uses a custom region-based allocator [24]
and conforms with the Java memory model [18]. Specifically,
we organize TeraCache into regions corresponding to RDDs.
A region is a collection of pages of memory and contains
objects of the same RDD. Consequently, TeraCache can free
batches of objects with identical lifetimes allocated in the
same region at once, similarly to Broom [12]. To maintain
memory safety, we do not allow references from TeraCache
to H1. All objects residing in TeraCache may only reference
objects residing in TeraCache. We achieve this by migrating
each RDD object and all objects reachable from it to Tera-
Cache. Then, the GC does not need to traverse TeraCache to
identify live-objects in H1. RDDs are immutable and always
safe to move to TeraCache without corrupting other objects.



Caching RDDs in TeraCache: Since RDD caching is explic-
itly managed by developers through the Spark RDD API [5],
we introduce two Java annotations, @cache and @uncache,
to annotate the corresponding code points in the Spark Block
Manager. The Block Manager is the Spark component within
the executor that manages caching, serialization, data trans-
fers, etc. The annotations we introduce are syntactic metadata
that communicate to the JVM that an RDD is cached or un-
cached by Spark. At a @cache annotation, which implies the
caching of an RDD, TeraCache performs a traversal of the
RDD data similar to the marking phase of a mark-sweep GC,
marking all objects that can be reached from it and migrating
them to an appropriate TeraCache region. We move the data
from H1 to TeraCache instead of directly allocating them
there, as RDD objects will have already been created when
the application requests the Spark Block Manager to cache
them. Respectively, at an @uncache annotation, the JVM can
reclaim the RDD block and its space from TeraCache. In addi-
tion, to annotating the user facing API we also annotate, with
@uncache the Spark Block Manager function that handles
eviction of RDDs –based on an LRU policy when the Storage
memory becomes full– to reclaim RDDs when TeraCache
reaches its capacity limit.
Division of DRAM between DR1 and DR2: Figure 2(b)
shows that TeraCache divides the physical DRAM (bottom
layer) into two regions: (1) DR1 used for H1, and (2) DR2
used as a cache for the memory mappings of TeraCache.
To reduce the time spent in GC during task execution, DR1
needs to be large enough to accommodate as much of the
newly created objects as possible. At the same time, the size
of DR2 determines the number of page faults causing mmap
I/O, which will have a direct effect on the average access
times for the cached data. Ideally, we need sufficient space
for H1 when tasks create new objects and sufficient space for
mmap when tasks use cached data. However, since DR1 and
DR2 share the physical DRAM, the larger the size of DR1
the smaller the size of DR2 and vice versa. Thus, we propose
a mechanism that dynamically resizes DR1 and DR2.

We use two metrics to determine whether such resizing is
needed. For DR1, we measure the frequency of minor GCs/s,
since a higher frequency indicates that the application needs
more heap space (DR1). Similarly, for DR2 we measure the
rate of pagefaults for a single memory-map since a high fre-
quency of page faults indicates that more space needed for
memory mappings. Overall, if the rate of pagefaults increases
and minor GC frequency is low, then we decrease the size of
DR1 and increase the size of DR2 and vice versa. Section 3
shows that dynamic resizing of DR1 and DR2 is necessary.

2.2 Prototype Implementation

We implement an early prototype of TeraCache based on the
ParallelGC [14]. ParallelGC splits the JVM heap into two
generations: (1) NewGen for keeping short-lived objects, and

Config. DR1
(GB)

DR2
(GB)

Virtual Memory
TeraCache (GB)

Total Virtual
Heap (GB)

A 2 30 420 422
B 4 28 420 424
C 8 24 420 428
D 16 16 420 436
E 24 8 420 444

Table 1: H1 size is equal to DR1. DR2 is the memory-
mappings for TeraCache in DRAM. Total DRAM is the sum
of DR1 and DR2. Total Virtual Heap is the sum of H1 and the
TeraCache heap size.

(2) OldGen for keeping long-lived objects. NewGen is divided
into an Eden space and two equally divided survivor spaces.
New objects are allocated in the Eden space, while objects
that survive a minor GC get moved to the survivor spaces.
Finally, objects surviving enough GCs and reach a predefined
tenuring threshold are further moved to the OldGen.

In our prototype, we place the NewGen in DRAM (H1)
and mmap OldGen onto an NVMe device. This implementa-
tion uses OldGen as cache, containing all long-lived objects,
including cached data. The Spark Block Manager does not
notify the JVM when a cache operation is performed, how-
ever, the garbage collector promotes cached data objects in
OldGen after several minor GCs. To avoid GC on cached data
we explicitly disable GC in OldGen.

Our prototype targets only caching and does not support
reclamation of cached RDDs during uncache operations. Note
that our prototype, allows for long-lived data other than the
cached ones to slip in the Old Gen as well. To ensure that
OldGen will primarily contain cached data and only a low
number of non-cached data we set the tenured threshold of the
GC to 25. Using this threshold we avoid in OldGen allocation
of long-lived objects which are not related to cached data.
As a result only 5% of the allocated objects in OldGen are
irrelevant long-lived data. This allows us to evaluate the GC
time and I/O traffic, as they would be achieved by a more
complete prototype of TeraCache.

3 Evaluation

Using the TeraCache prototype implementation we perform
a set of experiments to estimate: (1) the overall performance
benefit using TeraCache compared to hybrid (baseline), (2)
the impact of using TeraCache on GC overhead, and (3) the
effect of DRAM division between DR1 and DR2.
Evaluation Setup: We ran all experiments on a dual-socket
server with two Intel(R) Xeon(R) E5-2630 v3 CPUs at
2.4GHz, with 8 physical cores and 16 hyper-threads each
(32 total hyper-threads), 32 GB of DDR4 DRAM and CentOS
v7.3, with Linux kernel 4.14.72. As storage device we use a
PCIe-attached Samsung SSD 970 PRO with 500GB capacity.
In our experiments we use OpenJDK v8u250-b70 and Spark



Figure 4: (a) Applications performance using Linux swap, hybrid and TeraCache. (b) Execution Time, (c) Total GC time, and (d)
Total number of page faults for each TeraCache configuration with 64GB dataset.

v2.3.0, using one Spark executor with 30 threads. We evalu-
ate TeraCache against hybrid using KMeans (KM), LR, LgR,
and SVM workloads from the Spark-Bench Suite [15]. Each
workload ran for 100 iterations on a 64GB dataset. Also, for
TeraCache we ran each workload with the different configura-
tions shown in Table 1, while for hybrid we use a 32GB heap
that leverages 60% of the heap total heap space for on-heap
cache and the full storage device as the off-heap RDD cache.
Overall Performance Benefits Using TeraCache: Fig-
ure 4(a) shows the total execution time of each benchmark
when using hybrid (middle) and TeraCache (right). For Tera-
Cache we plot the best performing configurations in Table 1
for the corresponding workloads i.e., configuration C for LR,
LgR and configuration D for KM and SVM. For hybrid, we
use the maximum heap size to allocate more RDDs on-heap
to reduce the number of evictions in the storage device. We
observe that TeraCache improves the overall performance by
7%, 32%, 37%, and 20% for KM, LR, LgR, and SVM, respec-
tively compared to hybrid. To better understand the source of
the performance improvement we break down the execution
time in Other, Serdes+I/O, and GC time.
Impact of TeraCache on GC overhead: As discussed in
Section 2, Figure 4(a) shows that GC time decreases by 43%,
50%, and 45% for LR, LgR, and SVM respectively in hybrid.
Part of the reduction is attributed to TeraCache not having to
mark cached RDDs, while another part is attributed to Tera-
Cache using the DRAM heap only for ephemeral objects thus
performing fewer collections. In contrast, the original Spark
keeps both short-lived objects and RDDs in the DRAM heap
and only evicts serialized RDDs to the device. Specifically
for KM, we observe a 5% increase in GC time. We attribute
this increase to the fact that, in KM, tasks do not access large
cached data, but instead create large amounts of shuffle data
(short-lived objects) in H1. This, for smaller sizes of H1 (Fig-
ure 4 (c) configurations A and B), increases GC pressure and
causes frequent collections. Finally, note that even in E (Fig-
ure 4(c)), where GC time is minimal, execution time is not
necessarily minimum, as accessing TeraCache produces a
large number of page faults (e.g., for LR), as discussed below.
Effect of DRAM Division Between DR1 and DR2: As dis-

cussed in Section 2, the DRAM division between DR1 and
DR2 affects the overall performance of the applications. Fig-
ures 4(b), (c), and (d) show the execution time, the GC time,
and the total number of page faults respectively for each work-
load, for configurations A-E in Table 1. KM has the minimum
number of page faults using D but the GC time is higher
by 16% than E. KM generates shuffle data between stages,
requiring more space for the execution memory, as shown
by the great improvement in total execution time between B
and C. SVM has the minimum number of page faults and
the lowest GC and execution time using D, while LR and
LgR using C. Conversely, LR and LgR access the cached
data frequently, and hence respond better to increasing the
DRAM available for mmap pages. In general, variability in
the execution time between configurations can be attributed to
the application pattern. Benchmark stages with more accesses
to cached data benefit more from more mmap pages in DR2,
while stages that create many temporary objects benefit more
from increasing H1. Thus, resizing DR1 and DR2 at runtime
between stages is beneficial.

4 Discussion

TeraCache essentially relies on certain properties in JVM-
based data processing frameworks, requiring a modified JVM
that is aware of the annotation notifications. TeraCache takes
advantage of applications with the following properties:

• They create objects that can be grouped in sets of similar
and preferably long lifetimes. For example, Spark work-
flows with iterative computations use exist long-lived ob-
jects, such as accumulated records and shuffle data. Such
groups of objects allow TeraCache to free regions in its
TeraCache heap without the need for extensive garbage
collection. Our early TeraCache prototype relies on the run-
time system to move these objects to its TeraCache heap,
i.e., by annotating Spark caching code, which is transparent
to the program and user.

• They create objects whose transitive closure does not cover
the entire heap. To ensure safety, we avoid pointers from



the TeraCache to H1, by computing the transitive closure
of references (i.e., all reachable objects) and move them in
a single region in TeraCache. This implies that the transi-
tive closure of such objects should not be the entire heap,
otherwise using TeraCache will result in high overheads.

Note that although TeraCache’s approach could conceptually
cope with mutable objects, e.g., by re-scanning their transitive
closure after they are modified for new pointers, in Spark
cached objects are immutable. This simplifies further the
management of the TeraCache heap as a cache.

Recently, there is a fair amount of research activity towards
extending DRAM in two directions: (1) the use of transpar-
ently caching NVMe (or NVM) devices to DRAM, an ap-
proach we follow as well, and (2) extending (but not caching)
the system physical address space with byte-addressable
NVM [28, 29] or block-oriented NVMe devices [7]. In both
cases, employing a large heap occurs large GC overheads.
Our approach shows that there are significant performance
benefits in managing properly short-lived and group of objects
with similar properties in a co-design fashion by reducing GC
overheads. Therefore, we believe that TeraCache could be
used in both design alternatives.

5 Related Work

Caching in Spark: Neutrino [30] proposes a fine-grain, off-
heap caching mechanism that performs serdes for blocks that
belong to the same RDD, based on executor available memory
at runtime. LCS and LRC [11, 33] improve the management
of on-heap memory caching, evicting RDD blocks that lead
to minimum recomputation time in subsequent stages, with-
out dealing with GC overhead. MemTune [31] dynamically
tunes executor caching space at runtime, based on data center
workloads. MemTune provides task-level data prefetching
with a configurable window size to overlap computation with
serdes operation. Zhang et al. [36] modify the re-caching al-
gorithm to avoid moving blocks from memory back to disk at
the end of each task, reducing serdes cost. Tungsten [4] uses
off-heap computation to eliminate serdes. However, Tungsten
applies to known object schema (e.g. Spark SQL) while Ter-
aCache can be employed for arbitrary schema object data.
These works reduce serdes cost by managing cached data in-
memory while paying significant GC cost to traverse cached
data on every GC cycle. Instead, TeraCache completely re-
moves serdes, providing direct access to the cached data and
enables caches that exceed DRAM size, over memory-mapped
fast storage devices. Finally, TeraCache reduces GC overhead
by preventing GC traversals of cached data.
JVM heaps over byte-addressable NVM: Espresso [29]
takes advantage of the larger capacity of NVM by introduc-
ing a new programming model to persist long-lived objects.
Espresso does not provide a GC policy to avoid frequent
traversals of long-lived objects, increasing GC overhead, espe-

cially in big data analytics frameworks. Panthera [28] places
YoungGen in DRAM and divides OldGen into DRAM and
NVM. Panthera is integrated in ParallelGC and traverses all
cached RDDs on every major GC resulting in significant per-
formance degradation. Both Espresso and Panthera remove
serdes overhead by increasing heap size at the expense of GC
overhead. However, they are agnostic to application specific
characteristics, such as caching. Panthera statically divides
DRAM between the two heaps, regardless of job require-
ments. TeraCache is a co-design approach that uses applica-
tion knowledge to explicitly and transparently manage cached
objects and avoid unnecessary traversals over cached data on
every GC cycle, significantly reducing CPU overhead. Ad-
ditionally, TeraCache dynamically resizes the DRAM space
used for memory-mapped I/O and execution memory in Spark
according to job requirements, improving GC time and cache
access time. Finally, the design of TeraCache is generic; it
can be implemented on top of different garbage collector.
Region-based memory management for big data systems:
Broom [12] show that big-data systems generate objects with
the predefined life-times. They use region-based memory
management to locate in objects in shared regions improving
GC time. The downside of Broom is that add an additional
complexity to the end user to be aware of regions, while
TeraCache leverages the cache architecture of the framework.

6 Conclusions

Spark applications often cache intermediate data, especially
when performing iterative computations. However, the re-
peated serialization/deserialization of Spark RDDs creates
significant CPU overhead that cannot currently be reduced
without increasing GC overhead. We believe such overheads
can be eliminated by extending the JVM heap over fast stor-
age devices. We propose TeraCache, a co-design of the JVM
and Spark that uses an on-heap RDD cache, memory-mapped
over a fast storage device. TeraCache provides direct access
over cached RDDs, removing both serdes and GC overheads
for cached objects. Our preliminary results show that ML
workload performance improves by up to 37% using Tera-
Cache compared to serdes. We expect that TeraCache can
also improve performance for other frameworks making use
of very large immutable object caches (e.g., Apache Flink).

7 Acknowledgments

We thankfully acknowledge the support of the Evolve Project
(Grant Agreement No 825061), funded by the European Union
Horizon 2020 Research and Innovation Programme. Anasta-
sios Papagiannis is also supported by the Facebook Graduate
Fellowship. Finally, we thank Yannis Sfakianakis, Giorgos
Xanthakis, Fotis Nikolaides, and the anonymous reviewers
for their insightful comments and constructive feedback.



References

[1] Intel Optane SSD DC P4800X Series. https:
//www.intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/data-center-ssds/
optane-dc-ssd-series/optane-dc-p4800x-series.html.
Accessed: March 15, 2020.

[2] Kryo. https://github.com/EsotericSoftware/kryo. Ac-
cessed: March 15, 2020.

[3] SAMSUNG 970 EVO Plus NVMe M.2 SSD
500GB. https://www.cnet.com/products/wd-caviar-se-
80gb/. Accessed: March 15, 2020.

[4] Project tungsten: Bringing apache spark closer to bare
metal. https://databricks.com/blog/2015/04/28/project-
tungsten-bringingspark-closer-to-bare-metal.html,
2015. Accessed: May 25, 2020.

[5] RDD Programming Guide. https://spark.apache.org/
docs/2.3.0/rdd-programming-guide.html, 2018. Ac-
cessed: March 15, 2020.

[6] Western Digital Caviar SE WD800JD. https:
//www.samsung.com/us/computing/memory-storage/
solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-
mz-v7s500b-am/, 2018. Accessed: March 15, 2020.

[7] Intel memory drive technology. https://www.intel.com/
content/dam/support/us/en/documents/memory-and-
storage/intel-mdt-setup-guide.pdf, 2019. Accessed:
March 15, 2020.

[8] NVMe SSD 960 PRO/EVO. https://www.samsung.com/
semiconductor/minisite/ssd/product/consumer/ssd960/,
2019. Accessed: March 15, 2020.

[9] Rodrigo Bruno and Paulo Ferreira. A study on garbage
collection algorithms for big data environments. ACM
Comput. Surv., 51(1), January 2018.

[10] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-
Hartman. Linux Device Drivers, 3rd Edition. O’Reilly
Media, Inc., 2005.

[11] Yuanzhen Geng, Xuanhua Shi, Cheng Pei, Hai Jin, and
Wenbin Jiang. Lcs: An efficient data eviction strategy
for spark. Int. J. Parallel Program., 45(6):1285–1297,
December 2017.

[12] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil
Vaswani, Dimitrios Vytiniotis, Ganesan Ramalingan,
Derek Murray, Steven Hand, and Michael Isard. Broom:
Sweeping out garbage collection from big data systems.
In Proceedings of the 15th USENIX Conference on Hot
Topics in Operating Systems, HOTOS’15, page 2, USA,
2015. USENIX Association.

[13] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who limits the
resource efficiency of my datacenter: An analysis of
alibaba datacenter traces. In Proceedings of the Inter-
national Symposium on Quality of Service, IWQoS ’19,
New York, NY, USA, 2019. Association for Computing
Machinery.

[14] Richard Jones, Antony Hosking, and Eliot Moss. The
garbage collection handbook: the art of automatic mem-
ory management. CRC Press, 2016.

[15] Min Li, Jian Tan, Yandong Wang, Li Zhang, and
Valentina Salapura. Sparkbench: A comprehensive
benchmarking suite for in memory data analytic plat-
form spark. In Proceedings of the 12th ACM Interna-
tional Conference on Computing Frontiers, CF ’15, New
York, NY, USA, May 2015. Association for Computing
Machinery.

[16] Yucheng Low, Danny Bickson, Joseph Gonzalez, Car-
los Guestrin, Aapo Kyrola, and Joseph M. Hellerstein.
Distributed graphlab: A framework for machine learn-
ing and data mining in the cloud. Proc. VLDB Endow.,
5(8):716–727, April 2012.

[17] Alexander Makarov, V Sverdlov, and Siegfried Selber-
herr. Emerging Memory Technologies: Trends, Chal-
lenges, and Modeling Methods. Microelectronics Relia-
bility, 52(4):628–634, April 2012.

[18] Jeremy Manson, William Pugh, and Sarita V. Adve. The
Java Memory Model. SIGPLAN Not., 40(1):378–391,
January 2005.

[19] Chris Mellor. Samsung drops 128TB SSD
and kinetic-type flash drive bombshells.
https://www.theregister.co.uk/2017/08/09/
samsungs_128tb_ssd_bombshell, August 2017.
Accessed: March 15, 2020.

[20] Onur Mutlu. Memory scaling: A systems architecture
perspective. In 2013 5th IEEE International Memory
Workshop, IMW 2013, pages 21–25, May 2013.

[21] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Sub-
hasish Mitra, Aravind Narayanan, Diego Ongaro, Guru
Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric
Stratmann, and Ryan Stutsman. The case for ramcloud.
Commun. ACM, 54(7):121–130, July 2011.

[22] Anastasios Papagiannis, Giorgos Saloustros, Pilar
González-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 537–550, Denver, CO, June
2016. USENIX Association.

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/optane-dc-ssd-series/optane-dc-p4800x-series.html
https://github.com/EsotericSoftware/kryo
https://www.cnet.com/products/wd-caviar-se-80gb/
https://www.cnet.com/products/wd-caviar-se-80gb/
https://databricks.com/blog/2015/04/28/project-tungsten-bringingspark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringingspark-closer-to-bare-metal.html
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/ssd-970-evo-plus-nvme-m-2-500gb-mz-v7s500b-am/
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/intel-mdt-setup-guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/intel-mdt-setup-guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/intel-mdt-setup-guide.pdf
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.theregister.co.uk/2017/08/09/samsungs_128tb_ssd_bombshell
https://www.theregister.co.uk/2017/08/09/samsungs_128tb_ssd_bombshell


[23] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos
Saloustros, Manolis Marazakis, and Angelos Bilas. Op-
timizing Memory-mapped I/O for Fast Storage Devices.
In Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC
’20, USA, July 2020. USENIX Association.

[24] Nikolaos Papakonstantinou, Foivos S Zakkak, and
Polyvios Pratikakis. Hierarchical parallel dynamic de-
pendence analysis for recursively task-parallel programs.
In 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 933–942. IEEE,
2016.

[25] K. Parat and A. Goda. Scaling trends in nand flash.
In 2018 IEEE International Electron Devices Meeting
(IEDM), pages 2.1.1–2.1.4, December 2018.

[26] David Reinsel, John Gantz, and John Rydning. DataAge
2025 - The Evolution of Data to Life-Critical. Seagate,
November 2018.

[27] Shubhanshi Singhal, Pooja Sharma, Rajesh Kumar Ag-
garwal, and Vishal Passricha. A global survey on data
deduplication. Int. J. Grid High Perform. Comput.,
10(4):43–66, October 2018.

[28] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman,
Haris Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and
Guoqing Harry Xu. Panthera: Holistic memory man-
agement for big data processing over hybrid memories.
In the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI’19).
ACM, June 2019.

[29] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo
Chen, Binyu Zang, and Haibing Guan. Espresso: Brew-
ing java for more non-volatility with non-volatile mem-
ory. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, pages
70–83, New York, NY, USA, 2018. ACM.

[30] Erci Xu, Mohit Saxena, and Lawrence Chiu. Neutrino:
Revisiting memory caching for iterative data analyt-
ics. In Proceedings of the 8th USENIX Conference on
Hot Topics in Storage and File Systems, HotStorage’16,

pages 16–20, Berkeley, CA, USA, 2016. USENIX As-
sociation.

[31] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z.
Hu. Memtune: Dynamic memory management for in-
memory data analytic platforms. In 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS), pages 383–392, May 2016.

[32] Lijie Xu, Tian Guo, Wensheng Dou, Wei Wang, and
Jun Wei. An experimental evaluation of garbage col-
lectors on big data applications. Proc. VLDB Endow.,
12(5):570–583, January 2019.

[33] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben
Letaief. Lrc: Dependency-aware cache management for
data analytics clusters. IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, pages 1–9,
2017.

[34] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, NSDI’12, page 2, USA, April 2012.
USENIX Association.

[35] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10. USENIX Association, June
2010.

[36] K. Zhang, Y. Tanimura, H. Nakada, and H. Ogawa. Un-
derstanding and improving disk-based intermediate data
caching in spark. In 2017 IEEE International Confer-
ence on Big Data (Big Data), pages 2508–2517, Decem-
ber 2017.

[37] Xuechen Zhang, Ujjwal Khanal, Xinghui Zhao, and
Stephen Ficklin. Making sense of performance in in-
memory computing frameworks for scientific data analy-
sis: A case study of the spark system. Journal of Parallel
and Distributed Computing, 120:369–382, 2018.


	Introduction
	TeraCache: Caching Over a Device Heap
	Design Challenges
	Prototype Implementation

	Evaluation
	Discussion
	Related Work
	Conclusions
	Acknowledgments

