Say Goodbye to Off-heap Caches!
On-heap Caches Using Memory-Mapped I/O

Iacovos G. Kolokasis¹, Anastasios Papagiannis¹, Foivos Zakkak², Polyvios Pratikakis¹, and Angelos Bilas¹

¹University of Crete & Foundation of Research and Technology Hellas (FORTH), Greece
²University of Manchester (Currently at Red Hat, Inc.)
Outline

• Motivation

• TeraCache design for multiple heaps with different properties
 • How we reduce GC time?
 • How we grow TeraCache over a device?

• Evaluation

• Conclusions
Increasing Memory Demands!

- Big data systems cache large intermediate results in-memory
 - Speed-up iterative workloads

- Analytics datasets grow at a high rate
 - Today ~50ZB
 - By 2025 ~175ZB

- Big data systems request TBs of memory per server

[Source: www.seagate.com | Seagate]
Spark: Caching Impacts Performance

- Jobs cache intermediate data in memory
- Subsequent jobs reuse cached data
- Caching reduces execution time by orders of magnitude
- Naively, caching data needs large heaps which implies a lot of DRAM

![Execution Time Graph]

<table>
<thead>
<tr>
<th>Caching Impact</th>
<th>Execution Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC LR</td>
<td>300</td>
</tr>
<tr>
<td>RC LgR</td>
<td>100</td>
</tr>
<tr>
<td>RC SVM</td>
<td>400</td>
</tr>
<tr>
<td>HY</td>
<td>0</td>
</tr>
</tbody>
</table>

90% decrease in execution time with caching.
Caching Beyond Physical DRAM

- DRAM capacity scaling reaches its limit [Mutlu-IMW 2013]
- DRAM scales to GB / DIMM
- DRAM capacity is limited by DIMM slots / servers
- NVMe SSDs scale to TBs / PCIe slot at lower cost
- **Already Today:** Spark uses off-heap store on fast devices
Between a Rock and a Hard Place!
GC vs Serialization Overhead

Merge the benefits from both worlds!
Outline

• Motivation
• TeraCache design for multiple heaps with different properties
 • How we reduce GC time?
 • How we grow TeraCache over a device?
• Evaluation
• Conclusions
Different Heaps for Different Object Types

- Analytics computations generate mainly two types of objects
 - Short-lived, *(runtime managed)*
 - Long-lived, similar life-time, *(application managed)*

- JVM-heap on DRAM which is **garbage collected**
 - Locate short-lived objects
 - For computation usage (task memory usage)

- TeraCache-heap which is **never** garbage collected
 - Contains group of similar life-span objects (e.g., cached data)
 - Grow over a storage device *(no serialization)*
Split Executor Memory In Two Heaps

Executor Memory
- JVM-heap (GC)
- TeraCache (non-GC)

Organize TeraCache in regions
- **Bulk free:** Similar life-time objects into the same region
- Dynamic size

We make the JVM **aware** of cached data
- Spark notifies JVM
- Finds the transitive closure of the object
- Move and migrate object into a region
We Preserve JAVA Memory Safety

Avoid pointer corruption between objects in two heaps

No backward pointers: TeraCache → JVM-heap
 - Stop GC to reclaim objects used by TeraCache objects
 - Move transitive closure of the object
We Preserve JAVA Memory Safety

Avoid pointer corruption between objects in two heaps

No backward pointers: TeraCache → JVM-heap
- Stop GC to reclaim objects used by TeraCache objects
- Move transitive closure of the object

Allow forward pointers: JVM-heap → TeraCache
- But stop GC to traverse TeraCache

Allow internal pointers: TeraCache↔ TeraCache
Outline

• Motivation

• TeraCache design for multiple heaps with different properties
 • How we reduce GC time?
 • How we grow TeraCache over a device?

• Evaluation

• Conclusions
Dividing DRAM Between Heaps

How to deal with DRAM resources?
- Iterative Jobs → reuse cache data → need large DR2 size
- Shuffle Jobs → short-lived data → need large DR1 size

Executor Memory

DRAM

Execution Memory

Storage Memory

JVM-Heap

TeraCache Heap

mmap()
Deal With DRAM Resources For Multi-Heaps

• KM-jobs produce more short-lived data
 • More **minor GCs/s** → more space for DR1

• LR-jobs reuse large size of cached data
 • More **page faults/s** → more space for DR2

• We propose dynamic resizing of DR1, DR2
 • Based on page fault rate in MMIO
 • Based on Minor GCs

![Graph showing execution time vs. DR1 size (GB) with KM and LR highlighted]
Outline

• Motivation
• TeraCache design for multiple heaps with different properties
 • How we reduce GC time?
 • How we grow TeraCache over a device?
• Evaluation
• Conclusions
Prototype Implementation

• We implement an early prototype of TeraCache based on ParallelGC
 • Place New generation on DRAM
 • Place Old generation on the fast storage device
 • Explicitly disable GC on Old generation

• Evaluate
 • GC overhead
 • Serialization overhead

• Not support for reclamation of cached RDDs and dynamic resizing
Preliminary Evaluation

• TC improves performance up to 37% LR (on average 25%)
• TC improves performance up to 2x compared to Linux swap (LR)
• TC improves GC up to 50% LGR (on average 46%)
Conclusions

• TeraCache: A JVM/Spark co-design
 • Able to support very large heaps
 • Reduces GC time using two heaps
 • Eliminates serialization-deserialization

• Dynamic sharing of DRAM resources across heaps
• Improves Spark ML workloads performance by 25% on average
• Applicable to other analytics runtimes
Contact

Iacovos G. Kolokasis
kolokasis@ics.forth.gr
www.csd.uoc.gr/~kolokasis

Institute of Computer Science (ICS)
Foundation of Research and Technology (FORTH) - Hellas

Department of Computer Science, University of Crete