
Say Goodbye to Off-heap Caches! 
On-heap Caches Using Memory-Mapped I/O

Iacovos G. Kolokasis1, Anastasios Papagiannis1, Foivos Zakkak2, Polyvios Pratikakis1, and Angelos Bilas1

1University of Crete & Foundation of Research and Technology Hellas (FORTH), Greece

2University of Manchester (Currently at Red Hat, Inc.)



Outline

• Motivation

• TeraCache design for multiple heaps with different properties
• How we reduce GC time?

• How we grow TeraCache over a device?

• Evaluation

• Conclusions

2



Increasing Memory Demands!

• Big data systems cache large 
intermediate results in-memory
• Speed-up iterative workloads

• Analytics datasets grow at a high rate

3

[Source: www.seagate.com | Seagate]

• Today ~50ZB

• By 2025 ~175ZB

50ΖΒ

175ΖΒ

3x

• Big data systems request TBs of memory per server



Spark: Caching Impacts Performance

4

• Jobs cache intermediate data in memory

• Subsequent jobs reuse cached data

• Caching reduces execution time by 
orders of magnitude

• Naively, caching data needs large heaps 
which implies a lot of DRAM

90%



Caching Beyond Physical DRAM

5

• DRAM capacity scaling reaches its limit [Mutlu-IMW 2013]

• DRAM scales to GB / DIMM

• DRAM capacity is limited by DIMM slots / servers

• NVMe SSDs scale to TBs / PCIe slot at lower cost

• Already Today: Spark uses off-heap store on fast devices



Between a Rock and a Hard Place!
GC vs Serialization Overhead

6

Execution Memory Storage Memory
(on-heap cache)

Pros Cons

On-heap
Cache

No Serialization High GC

Off-heap
Cache

Low GC High Serialization

Merge the benefits from both worlds!

Executor
Memory

Executor
Memory

Execution Memory Storage Memory

(on-heap cache) (off-heap cache)

Disk

serialize/deserialize



Outline

• Motivation

• TeraCache design for multiple heaps with different properties

• How we reduce GC time?

• How we grow TeraCache over a device?

• Evaluation

• Conclusions

7



Different Heaps for Different Object Types

• Analytics computations generate mainly two types of objects
• Short-lived, (runtime managed)
• Long-lived, similar life-time, (application managed)

• JVM-heap on DRAM which is garbage collected
• Locate short-lived objects
• For computation usage (task memory usage)

• TeraCache-heap which is never garbage collected
• Contains group of similar life-span objects (e.g., cached data)
• Grow over a storage device (no serialization)

8



Split Executor Memory In Two Heaps

9

Execution 
Memory

Storage
Memory

JVM-heap (GC) TeraCache (non-GC)

region0 regionN. . .

Executor Memory
• JVM-heap (GC)

• TeraCache (non-GC)

Organize TeraCache in regions
• Bulk free: Similar life-time objects into the same region

• Dynamic size

Tera-heapJVM-heap

We make the JVM aware of cached data
• Spark notifies JVM
• Finds the transitive closure of the object
• Move and migrate object into a region



We Preserve JAVA Memory Safety

10

TeraCache-heap (no GC)
Old GenNew Gen Region Region Region

JVM-heap (GC)

Avoid pointer corruption between objects in two heaps

No backward pointers: TeraCache → JVM-heap
• Stop GC to reclaim objects used by TeraCache objects
• Move transitive closure of the object



We Preserve JAVA Memory Safety

11

TeraCache-heap (no GC)
Old GenNew Gen Region Region Region

JVM-heap (GC)

Avoid pointer corruption between objects in two heaps

No backward pointers: TeraCache → JVM-heap
• Stop GC to reclaim objects used by TeraCache objects
• Move transitive closure of the object

Allow forward pointers: JVM-heap → TeraCache
• But stop GC to traverse TeraCache

Allow internal pointers: TeraCache↔TeraCache



Outline

• Motivation

• TeraCache design for multiple heaps with different properties

• How we reduce GC time?

• How we grow TeraCache over a device?

• Evaluation

• Conclusions

12



Dividing DRAM Between Heaps

13

Executor
Memory

JVM

DRAM

Execution Memory

DR1 DR2

Storage Memory

JVM-Ηeap TeraCache Heap

NVMe SSD

mmap()
How to deal with DRAM resources?

• Iterative Jobs → reuse cache data → need large DR2 size
• Shuffle Jobs → short-lived data → need large DR1 size



Deal With DRAM Resources For Multi-Heaps

14

• KM-jobs produce more short-lived data
• More minor GCs/s →more space for DR1

3x 2x

• We propose dynamic resizing of DR1, DR2
• Based on page fault rate in MMIO

• Based on Minor GCs

• LR-jobs reuse large size of cached data
• More page faults/s→ more space for DR2



Outline

• Motivation

• TeraCache design for multiple heaps with different properties

• How we reduce GC time?

• How we grow TeraCache over a device?

• Evaluation

• Conclusions

15



Prototype Implementation

• We implement an early prototype of TeraCache based on ParallelGC
• Place New generation on DRAM

• Place Old generation on the fast storage device

• Explicitly disable GC on Old generation

• Evaluate
• GC overhead

• Serialization overhead

• Not support for reclamation of cached RDDs and dynamic resizing

16



Preliminary Evaluation

17

• TC improves performance up to 37% 
LR (on average 25%)

• TC improves performance up to 2x 
compared to Linux swap (LR)

• TC improves GC up to 50% LGR 
(on average 46%)

2x

37%

50%



Conclusions

• TeraCache: A JVM/Spark co-design
• Able to support very large heaps

• Reduces GC time using two heaps

• Eliminates serialization-deserialization

• Dynamic sharing of DRAM resources across heaps

• Improves Spark ML workloads performance by 25% on average

• Applicable to other analytics runtimes

18



Contact

Iacovos G. Kolokasis

kolokasis@ics.forth.gr

www.csd.uoc.gr/~kolokasis

Institute of Computer Science (ICS)

Foundation of Research and Technology (FORTH) - Hellas
• • •

Department of Computer Science, University of Crete

19

mailto:kolokasis@ics.forth.gr
http://www.csd.uoc.gr/~kolokasis

