
Filesystem Aging: It’s more Usage than Fullness

Alex Conway1, Eric Knorr1, Yizheng Jiao2, Michael A. Bender3, William Jannen4, Rob Johnson5,
Donald Porter2, and Martin Farach-Colton1

1Rutgers University, 2UNC, 3Stony Brook University, 4Williams College, 5VMware Research

Abstract
Filesystem fragmentation is a first-order performance
problem that has been the target of many heuristic and
algorithmic approaches. Real-world application bench-
marks show that common filesystem operations cause
many filesystems to fragment over time, a phenomenon
known as filesystem aging.

This paper examines the common assumption that
space pressure will exacerbate fragmentation. Our mi-
crobenchmarks show that space pressure can cause a sub-
stantial amount of inter-file and intra-file fragmentation.
However, on a “real-world” application benchmark, space
pressure causes fragmentation that slows subsequent reads
by only 20% on ext4, relative to the amount of fragmen-
tation that would occur on a file system with abundant
space. The other file systems show negligible additional
degradation under space pressure.

Our results suggest that the effect of free-space frag-
mentation on read performance is best described as ac-
celerating the filesystem aging process. The effect on
write performance is non-existent in some cases, and, in
most cases, an order of magnitude smaller than the read
degradation from fragmentation cause by normal usage.

1 Introduction
Over the course of ordinary use, filesystems tend to be-
come fragmented, or age. Fragmentation causes perfor-
mance declines in many filesystem operations, including
file reads, writes, and recursive directory traversals. Aging
tends to manifest as a pervasive performance decline.

Because aging is sensitive to usage patterns and can
happen slowly over time, it is notoriously difficult to study.
Smith and Seltzer [15] studied the real-world performance
of the Fast Filesystem (FFS) over the course of 3 years and
showed substantial filesystem aging. However, the cost
and time of repeating such a study on each new filesystem,
storage device and user workload render this approach
infeasible. However, their findings inspired work on tools
to synthetically age file systems [6, 17].

Because aging is difficult to repeatably measure, a cer-
tain amount of folklore has emerged. Many practitioners
believe that filesystem aging is already solved and claim
that aging only occurs under adversarial workloads or

when the disk is full. For example Wikipedia claims that,
as time progresses and the free space fragments “. . . the
filesystem is no longer able to allocate new files con-
tiguously, and has to break them into fragments. This is
especially true when the filesystem becomes full and large
contiguous regions of free space are unavailable.” [3]

Recent work by Conway et al. [8] and Kadekodi et
al. [12] showed that this optimism was unfounded. They
showed that modern filesystems do age, often severely,
even on SSDs, even under realistic workloads, even when
the disk is far from full. For example, Conway et al.
showed that ext4 could exhibit slowdowns of over 20×
on a realistic git-based workload on a nearly empty hard
drive, and slowdowns of 2−4× on an SSD.

The goal of this paper is to tease out the effect of disk
fullness on filesystem fragmentation. We first use a syn-
thetic benchmark designed to stress the worst-case, full-
disk behavior of the filesystem. We find that, on an HDD,
the synthetic benchmark can cause ext4 to fragment far
worse on a full disk than on a nearly empty one. For the
other filesystems, a full disk roughly doubles the read per-
formance degradation from fragmentation. On SSDs, disk
fullness has a modest effect on read degradation from frag-
mentation (typically less than 20%), except on BTRFS.

We then measure a more realistic, git-based application
workload, in which disk fullness degrades read perfor-
mance by only about 20% for ext4 on HDD compared
to normal fragmentation. It has a negligible impact for
BTRFS and XFS on HDD, and for all filesystems on SSD.

In summary, our results show that file and directory
allocations on modern filesystems can be severely frag-
mented in the course of normal usage, even with plenty
of contiguous free space. Although the fragmentation
is worsened under space pressure in a few stress tests,
the behavior is inconsistent across file systems. Our re-
sults suggest that normal usage will erode performance
before space pressure and the resulting free-space frag-
mentation has the opportunity. An interesting question
for future work is whether space pressure is more of a
problem on a filesystem which resists use-aging, such asx
BetrFS [8, 10, 16].



2 Related Work
Prior work can be broadly classified into two categories:
aging studies and anti-aging techniques.

Reproducing and studying aging. It takes years to col-
lect years of traces from live systems. Moreover, traces
are large, idiosyncratic, and may contain sensitive data.
Consequently, researchers have created synthetic bench-
marks to simulate aging. These benchmarks create files
and directories and perform normal filesystem operations
to induce aging [5]. Once aged, a filesystem can be pro-
filed using other benchmarking tools to understand how
an initial aged state affects future operations.

Ji et al. [11] studied filesystem fragmentation on mo-
bile devices, confirming that fragmentation causes perfor-
mance degradation on mobile devices and that existing
defragmentation techniques are ineffective.

Anti-aging strategies. The perception that aging is a
solved problem is likely due to the abysmal aging of the
once ubiquitous FAT filesystem. FAT tracks file contents
using a linked list, so a cold-cache random read is particu-
larly expensive when compared to modern tree-structured
filesystems. Moreover, most FAT implementations have
no heuristics to combat aging; lack read-ahead or other
latency-hiding heuristics; and, on earlier PCs with lim-
ited DRAM, suffered frequent cache misses [9]. Even
on more modern systems, write performance on an aged
FAT filesystem degrades by two orders of magnitude [14].
As a result, users were trained to defragment hard drives
using an offline utility, which rendered a noticeable perfor-
mance improvement. Although the works above show that
modern filesystems also age, the aging is not as extreme
as users experienced with FAT.

Block groups are an anti-aging strategy introduced in
FFS [13] and adopted by modern filesystems like ext4.
Another common strategy is to pre-allocate contiguous
file regions, either by inference or via explicit interfaces
like fallocate(). Finally, BetrFS uses large (2–4 MB)
nodes to group related data, and it incrementally rewrites
data to preserve locality as the filesystem evolves [8].

3 Free-Space Fragmentation
This section explains how disk fullness can impact free-
space fragmentation, how free-space fragmentation can
impact filesystem performance, and how free-space frag-
mentation can lead to other kinds of fragmentation. The
observations in this section will be used in the next section
to design benchmarks for measuring the impact of disk
fullness on filesystem aging.

Filesystem fragmentation. Several types of disk blocks
should be kept together to improve filesystem perfor-
mance. Fragmentation occurs when related blocks be-
come scattered. We categorize fragmentation by the types
of blocks and their relationships:

Intrafile: fragmentation of allocated blocks in a file.
Interfile: fragmentation of the blocks of small files in
the same directory.
Free-space: fragmentation of unused disk blocks.
The first two types of fragmentation directly impact

the read performance of a filesystem and together can be
referred to as read aging. During a scan of filesystem
data, fragmented blocks will incur non-sequential reads,
which on most modern storage hardware are considerably
slower than sequential reads.

Free-space fragmentation, disk fullness, and write
performance. This paper focuses on disk fullness and
any resulting free-space fragmentation, which can have
a direct effect on write performance and an indirect ef-
fect on read performance. When free space is fragmented,
the filesystem must choose between scattering new data
among the existing free-space fragments (fewer writes,
slower future reads) or migrating old data to coalesce
free-space fragments (more writes, faster future reads). If
a filesystem fragments incoming writes, then free-space
fragmentation gets turned into regular intra- and inter-
file fragmentation, i.e., read aging. A fragmented write is
also slower than when free space is unfragmented, as one
write is split into discrete I/Os. If the filesystem compacts
the free space by moving data, the compaction slows the
write operation. In either case, free-space fragmentation
degrades write performance.

Note that intra- and inter-file fragmentation can exacer-
bate free-space fragmentation, and vice versa: fragmented
files, when deleted, produce fragmented free space.

As the disk becomes full, free-space fragmentation
tends to worsen. If the filesystem coalesces free-space
fragments, combining several small fragments into one
large fragments may involve copying already-allocated
data multiple times to avoid fragmenting it [7]. This cost
is inversely proportional to the fraction of free space avail-
able on the disk. Even on systems that don’t coalesce
free-space fragments, fuller disks simply have more al-
located objects and less free space, so it becomes more
difficult to co-locate related data.

Free-space fragmentation and read performance.
Free-space fragmentation differs from the other types of
fragmentation in that it doesn’t immediately impact read
performance. Because HDDs and most types of SSDs
have faster sequential reads than random reads, inter- and
intra-file fragmentation causes scans to be slower [4].
Free-space fragmentation, on the other hand, doesn’t af-
fect read performance, since free space is not accessed
during a scan.

Summary. Though the different forms of fragmentation
are interdependent, we can cleanly measure each type at
any single moment in time. We can measure free-space
fragmentation directly on ext4 using e2freefrag. For the



other file systems, the allocated and free space can be
inferred by scanning the data with a cold cache and using
a tool such as blktrace [1] to see which blocks are read,
but we do not pursue this approach here. We can measure
intra- and inter-file fragmentation by measuring read per-
formance. Due to the complex feedback described above,
we might expect that disk fullness will affect both free-
space and intra- and inter-file fragmentation, and hence
will affect read and write performance.

4 Measuring Fragmented Performance
The goal of our benchmarks is to understand how disk full-
ness affects filesystem fragmentation, and the subsequent
read and write performance. In particular:
• Does fullness make fragmentation worse? If so, how

much? In other words, is disk fullness a main driver
of fragmentation, a second-order driver, or completely
overwhelmed by other fragmentation factors?

• Do full disks age faster than empty ones? Do full disks
age more overall?

• Does disk fullness affect fragmentation under realistic
workloads? If not, can synthetic workloads demonstrate
a significant connection between fullness and subse-
quent read or write degradation?

Empty, full, and unaged disks. We measure the effects
of fragmentation and full disks as follows. We first run
a workload generator on a small partition (the “full disk”
case). This generator may create, delete, rename, write,
etc., files. It measures the disk fullness and ensures that,
after initial setup, the partition is always above a certain
level of fullness. We record the sequence of operations
(such as git pulls or file deletions) performed and then
replay them on a much larger partition (the “empty disk”
case). Thus the empty and full partitions go through the
exact same sequence of logical filesystem states.

We run the test on the full partition, the empty partition,
and on a fresh (large) partition to which we have copied
the current state (the “unaged disk” case). The unaged
partition thus provides the baseline performance of an
unaged version of the same filesystem state.

Measuring read fragmentation: The Grep Test. To
measure fragmentation, we periodically pause the work-
load generator and run a grep test. This is the wall-clock
time it takes to perform a recursive grep on the root di-
rectory of the filesystem. This performs a recursive scan
through the data and metadata. Fragmentation will cause
this scan to be less sequential. Because the filesystems
change over time, we report this time normalized by the
filesystem size as reported by du -s.

Measuring write fragmentation. To measure write
fragmentation, we use the wall-clock latency of new
writes. We check that the workload is not CPU-bound.

Measuring free-space fragmentation We measure free-
space fragmentation directly on ext4 using the e2freefrag
tool [2]. This tool reports a histogram of the sizes of
free extents. We do not directly measure the free-space
fragmentation on XFS, BTRFS or F2FS.
Experimental setup. Each experiment compares three
filesystems on HDD: BTRFS, ext4 and XFS, and addition-
ally F2FS on SSD, using the versions in Ubuntu 14.04.5
LTS, kernel version 3.11.10 with default settings. The
benchmarks do not use O_DIRECT, and therefore the
filesystems may use the page cache.

We use Dell PowerEdge T130 machines with 4-core
3.00 GHz Intel(R) Xeon(R) E3-1220 v6 CPU, 16 GB
RAM, two 500 GB, 7,200 RPM TOSHIBA HDDs and a
250 GB Samsung SSD 860.

5 Experimental Results
In this section we describe the benchmarks used to gen-
erate free-space fragmentation and the results of running
them on several popular filesystems.
Free-space fragmentation microbenchmark (FSFB).
FSFB is a worst-case microbenchmark, designed to in-
duce severe free-space fragmentation. FSFB first fills a
filesystem with many small files. Next, it randomly se-
lects files for deletion and creates a new directory with
the same total size as the deleted files. Deleting small
files creates fragmented free space, across which the new
directory will need to be allocated.

FSFB starts by creating a random directory structure
with 1000 directories. Then it creates files by randomly
selecting a directory and creating a file there with size
chosen randomly between 1KiB and 150KiB. This pro-
cess creates the files out-of-directory-order, so that the
initial layout is “pre-aged.” This process repeats until the
filesystem reaches the target level of fullness.

FSFB then ages the filesystem through a series of re-
placement rounds. In a replacement round, 5% of the
files, by size, are removed at random and then replaced
by new files of equivalent total size in a newly created
directory in a random location.
FSFB read aging. We run the microbenchmark with a
target fullness of 95% on a 5GB partition. We then age the
filesystem for 500 replacement rounds, performing a grep
test every 50 rounds. We then replay the benchmark on a
50GB partition, so that it is at most 10% full (“empty”).
We also create an “unaged” version by copying the data
to a fresh partition.

Figure 1a shows the HDD results. All filesystems are
slower in the full-disk case than the empty-disk case. How-
ever, BTRFS and XFS slow-down far more from unaged
to aged than from empty to full. ext4, in contrast, only
loses read performance under space pressure.

Figure 1b shows the SSD results. The additional read
aging from disk fullness is negligible.



ext4 full ext4 empty ext4 unaged
BTRFS full BTRFS empty BTRFS unaged

XFS full XFS empty XFS unaged
F2FS full F2FS empty F2FS unaged

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0

Rounds

G
re

p
C

os
t(

se
co

nd
s/

G
iB

)

(a) Grep performance on HDD under FSFB. By the end, all
full file systems are slower than empty by 1.5−4×, XFS and
BTRFS are 7× slower empty than unaged.

0 100 200 300 400 500

0
5

10
15

Rounds

G
re

p
C

os
t(

se
co

nd
s/

G
iB

)

(b) Grep performance on SSD under FSFB. The full filesystems
show no discernable slowdown compared to empty, however the
empty ones are 25-50% slower than unaged.

Figure 1: Read performance under FSBS on a 95% full
“full” disk, a 10% full “empty” disk, and an “unaged” copy.
Lower is better.

FSFB write aging. We measure write aging by measur-
ing the wall-clock time to create each new directory of
files during a replacement round.

Figure 2a shows that, on an empty hard drive, none of
the filesystems exhibit any write aging beyond the initial
filesystem construction. When the disk is full, ext4 has
40% higher write costs, BTRFS has 25% higher write
costs, and XFS has essentially the same costs. Thus disk
fullness does induce some write aging, but it is an order
of magnitude less than read aging on an empty disk.

On SSDs (Figure 2b), XFS is slightly faster when the
disk is full, ext4 exhibits a modest 25% slowdown be-
tween the empty an full cases, BTRFS rapidly loses half
its performance in the full-disk case, and F2FS has erratic
but generally only slightly slower performance. Again,

ext4 full ext4 empty
BTRFS full BTRFS empty

XFS full XFS empty
F2FS full F2FS empty

0 100 200 300 400 500

0
50

0
1,

00
0

Rounds

W
ri

te
C

os
t(

se
co

nd
s/

G
iB

)

(a) Write performance on HDD under FSBS. ext4 slows by 40%
and BTRFS by 25%. XFS performance is almost unchanged.

0 100 200 300 400 500

0
10

20
30

Rounds

W
ri

te
C

os
t(

se
co

nd
s/

G
iB

)

(b) Write performance on SSD under FSFB. The four filesystems
exhibit different behaviors.

Figure 2: Write performance under FSFB on a 95% full
“full” disk and a 10% full “empty” disk. Lower is better.

except possibly for BTRFS, the performance differences
between an empty and full SSD are smaller than the read
aging performance losses on an empty disk.

As with the read aging effect of disk fullness, space
pressure induces a significant write aging effect, but it is
an order of magnitude smaller than read aging. The two
outlier points were ext4 full-disk aging on an HDD and
BTRFS write aging on an SSD. It might be worth inves-
tigating the design decisions that make these filesystems
vulnerable to this workload on a full disk.

Git-Benchmark full-disk read aging. We also use git
as a more representative application benchmark. We mod-
ify the git aging benchmark [8], so that it can be used to
keep a disk in a nearly-full steady state. The git bench-
mark replays the commit history of the Linux kernel from
github.com. The benchmark pulls each commit, running
a grep test every 100 commits.

The challenge to performing the git test on a full disk is
that the repository grows over time. The disk starts empty

github.com


ext4 full ext4 empty ext4 unaged
BTRFS full BTRFS empty BTRFS unaged

XFS full XFS empty XFS unaged
F2FS full F2FS empty F2FS unaged

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0

Pulls Completed (in thousands)

G
re

p
C

os
t(

se
co

nd
s/

G
iB

)

(a) Grep performance on HDD under git benchmark. ext4 on a
full disk is ˜20% slower than on empty. For XFS and BTRFS,
the full and empty performance is barely distinguishable.

0 2 4 6 8 10

0
5

10
15

20

Pulls Completed (in thousands)

G
re

p
C

os
t(

se
co

nd
s/

G
iB

)

(b) Grep performance on SSD under git benchmark. The perfor-
mance between full and empty for all filesystems is negligible.

Figure 3: Read performance under the git benchmark.
Lower is better.

and eventually becomes full, at which time we cannot pull
newer commits. We overcome this challenge by main-
taining multiple copies of the repository. We initially fill
the disk to 75% by creating multiple copies of the initial
commit. Then we update the repositories round-robin by
pulling one more commit, until a pull fails due to disk full-
ness. At that point the repository to which the pull failed
is deleted, freeing up space. Then the process continues.

Every operation is also mirrored on an “empty” filesys-
tem and an “unaged” version (see section 4). Because this
workload is generally CPU-bound during the pulls, we do
not present the effect on write aging.

On an HDD, there is a big difference between the empty
and unaged versions (Figure 3a), commensurate with prior
results [8]. For XFS and BTRFS, the full and empty ver-
sions are barely distinguishable. The read cost for ext4 on
a full disk is about 20% greater than on an empty disk.

On SSD, the full and empty lines of all three filesystems

050 150 500

20
40

60

FSFB full

Sp
ac

e
(M

iB
)

050 150 500

0
5

10

FSFB empty

Sp
ac

e
(G

iB
)

0 1 3.5 10

0
20

0
40

0
60

0

git full

Sp
ac

e
(M

iB
)

0 1 3.5 10

0
2

4
6

8

git empty

Sp
ac

e
(G

iB
)

2GiB
1GiB

512MiB
256MiB
128MiB
64MiB
32MiB
16MiB
8MiB
4MiB
2MiB
1MiB

512KiB
256KiB
128KiB
64KiB
32KiB
16KiB
8KiB

Figure 4: Free space by extent size on ext4 for snapshots
under FSFB (at 0, 50, 150 and 500 rounds) and git (at 0, 1,
3.5 and 10 thousand pulls). Each bar represents the total
free space in extents of the given size.

are essentially indistinguishable, shown in Figure 3b. On
ext4, F2FS and, to a lesser extent on BTRFS, the read
costs of the unaged versions drift higher as the benchmark
progresses. This is due to a smaller average file size.

If free-space aging were a first-order consideration, we
would expect it to consistently create performance degra-
dation in all of these experiments. In the git workload, disk
fullness has at most a lower-order effect on read aging
than the workload itself. Its biggest impact was on ext4 on
HDD, which added 20% to the read cost, compared to a
1,200% increase from the baseline fragmentation caused
by usage with an abunance of space.

Free-Space Fragmentation on ext4 figure 4 shows the
distribution of free-space among different extent sizes
(bucketed into powers of 2), as reported by e2freefrag [2],
on ext4 during our benchmarks.

Both benchmarks create many small free fragments.
However, FSFB on a full disk immediately uses all the
large free extents, whereas git on a full disk and both
benchmarks on a empty disk have large free extents avail-
able throughout. Because ext4 saw a large performance
impact from fullness under FSFB (figure 1), but not under
git (figure 3), this suggests that the availability of large
free extents is more important for ext4 performance than
the existence of many small free fragments.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Ethan Miller, for their helpful feedback on the paper. We
gratefully acknowledge support from a NetApp Faculty
Fellowship, NSF grants CCF 805476, CCF 822388, CNS
1408695, CNS 1755615, CCF 1439084, CCF 1725543,
CSR 1763680, CCF 1716252, CCF 1617618, IIS 1247726,
and from VMware.



6 Discussion Topics
Our position is that, although the community acknowl-
edges that filesystem aging degrades performance, the
causes and effects of filesystem aging are poorly under-
stood. As a result both filesystem designers and filesys-
tem users do not know how to prevent, treat or even work
around this problem.

We would like to engage the storage community about
their experience with filesystem aging and full-disk frag-
mentation.

• Are there additional experiments that the community
would find compelling to tease out and isolate the
root causes of aging?

• Are there realistic application workloads—beyond
git—that would generate aged filesystem states?
Specifically, are there application workloads that gen-
erate significant free space fragmentation that have
been observed in the wild?

• What techniques can be/are being used to combat
the different causes of filesystem aging?

This paper seeks to generate discussion by challeng-
ing the commonly held belief that disk fullness has a
first-order performance impact on filesystem performance.
If workshop attendees have lived experiences that run
counter to our findings, we hope to discuss the conditions
that led to the filesystem states that they observed and
diagnose the root cause of their filesystem’s performance
degradation.

To the extent that disk fullness presents challenges to
filesystem design, we would love to discuss the theoretical
and systems-design approaches which could solve the
problem.

References
[1] blktrace(8) - linux man page. https://linux.die.

net/man/8/blktrace.

[2] e2freefrag(8) - linux man page. https://linux.
die.net/man/8/e2freefrag.

[3] Wikipedia: File system fragmentation.
https://en.wikipedia.org/wiki/File_
system_fragmentation. Accessed: 2019-03-13.

[4] 31st ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA, 2019, Phoenix, AZ, USA,
June 22-24, 2019. ACM, 2019.

[5] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Generating realistic
impressions for file-system benchmarking. TOS,
5(4):16:1–16:30, 2009.

[6] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Generating realistic im-
pressions for file-system benchmarking. In Margo I.
Seltzer and Richard Wheeler, editors, USENIX FAST,
pages 125–138. USENIX, 2009.

[7] Michael A. Bender, Martin Farach-Colton, Sándor P.
Fekete, Jeremy T. Fineman, and Seth Gilbert. Cost-
oblivious storage reallocation. ACM Trans. Algo-
rithms, 13(3):38:1–38:20, 2017.

[8] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,
William Jannen, Yang Zhan, Jun Yuan, Michael A.
Bender, Rob Johnson, Bradley C. Kuszmaul, Don-
ald E. Porter, and Martin Farach-Colton. File sys-
tems fated for senescence? nonsense, says science!
In Geoff Kuenning and Carl A. Waldspurger, editors,
USENIX FAST, pages 45–58. USENIX Association,
2017.

[9] Robert Kelley Cook. Design goals and imple-
mentation of the new high performance file sys-
tem. http://cd.textfiles.com/megademo2/
INFO/OS2_HPFS.TXT.

[10] William Jannen, Jun Yuan, Yang Zhan, Amogh Ak-
shintala, John Esmet, Yizheng Jiao, Ankur Mittal,
Prashant Pandey, Phaneendra Reddy, Leif Walsh,
Michael A. Bender, Martin Farach-Colton, Rob
Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. Betrfs: A right-optimized write-optimized
file system. In Jiri Schindler and Erez Zadok, editors,
USENIX FAST, pages 301–315. USENIX Associa-
tion, 2015.

[11] Cheng Ji, Li-Pin Chang, Liang Shi, Chao Wu, Qiao
Li, and Chun Jason Xue. An empirical study of file-
system fragmentation in mobile storage systems. In
Nitin Agrawal and Sam H. Noh, editors, HotStorage.
USENIX Association, 2016.

[12] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-
gory R. Ganger. Geriatrix: Aging what you see and
what you don’t see. A file system aging approach
for modern storage systems. In Haryadi S. Gunawi
and Benjamin Reed, editors, USENIX ATC, pages
691–704. USENIX Association, 2018.

[13] Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system for
UNIX. ACM Trans. Comput. Syst., 2(3):181–197,
1984.

[14] Han-Kwang Nienhuys. Flash drive fragmentation:
does it affect performance? http://www.lagom.
nl/misc/flash_fragmentation.html.

https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/e2freefrag
https://linux.die.net/man/8/e2freefrag
https://en.wikipedia.org/wiki/File_system_fragmentation
https://en.wikipedia.org/wiki/File_system_fragmentation
http://cd.textfiles.com/megademo2/INFO/OS2_HPFS.TXT
http://cd.textfiles.com/megademo2/INFO/OS2_HPFS.TXT
http://www.lagom.nl/misc/flash_fragmentation.html
http://www.lagom.nl/misc/flash_fragmentation.html


[15] Keith A. Smith and Margo I. Seltzer. File system
aging - increasing the relevance of file system bench-
marks. In John Zahorjan, Albert G. Greenberg, and
Scott T. Leutenegger, editors, Proceedings of the
1997 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems,
Seattle, Washington, USA, June 15-18, 1997, pages
203–213. ACM, 1997.

[16] Jun Yuan, Yang Zhan, William Jannen, Prashant
Pandey, Amogh Akshintala, Kanchan Chand-
nani, Pooja Deo, Zardosht Kasheff, Leif Walsh,
Michael A. Bender, Martin Farach-Colton, Rob

Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. Optimizing every operation in a write-
optimized file system. In Angela Demke Brown
and Florentina I. Popovici, editors, USENIX FAST,
pages 1–14. USENIX Association, 2016.

[17] Ningning Zhu, Jiawu Chen, and Tzi-cker Chiueh.
TBBT: scalable and accurate trace replay for file
server evaluation. In Garth Gibson, editor, Proceed-
ings of the FAST ’05 Conference on File and Storage
Technologies, December 13-16, 2005, San Francisco,

California, USA. USENIX, 2005.


	Introduction
	Related Work
	Free-Space Fragmentation
	Measuring Fragmented Performance
	Experimental Results
	Discussion Topics

