
Abstract
As advanced data acquisition systems become
increasingly available to heterogeneous, resource-
constrained environments, intelligent decision-making
and automation have become more prevalent. The
agricultural Internet of things (Ag-IoT) application is
representative of such an environment. Ag-IoT best
represents a heterogeneous, resource-constrained
environment, with its lack of broadband coverage in
farms and rural areas. It is a heterogeneous network of
sensors and equipment, with a high degree of data
variability and a pressing need for automation. In this
work, we propose ERGO, an edge computing
architecture for resource-constrained Ag-IoT. We also
develop Ag-IoT application APIs and the associated
service infrastructure. Our proposed architecture
manages the heterogeneity and dynamicity through its
inherent composability and scalability. As such, it
combines container orchestration systems such as
Kubernetes with web-services APIs to provide
scalable, edge-enabled Ag-IoT services. Our
architecture and preliminary evaluations show that our
scalable edge computing platform, which runs
independent of cloud-backed assistance, can address
critical challenges for resource-constrained,
heterogeneous environments.

References
• E. A. Brewer. Kubernetes and the Path to Cloud Native.

In Proceedings of the Sixth ACM Symposium on Cloud
Computing, SoCC ’15, page 167, New York, NY, USA,
2015. Association for Computing Machinery.

• O. Elijah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and
M. N. Hindia. An overview of Internet of Things (IoT)
and data analytics in agriculture: Benefits and
challenges. IEEE Internet of Things Journal, 5(5):3758–
3773, October 2018.

Operational Challenges
Numerous challenges exist that are specific to
heterogeneous Ag-IoT environments

• First, in-field sensors use a variety of protocols and
wireless access technologies to communicate
sensing data to endpoints. Enabling protocol
conversion to TCP/IP and a well-known messaging
protocol is required.

• IoT gateways to aggregate and send data from non-
standard protocols must be considered.

• To include specialized hardware accelerators such as
field-programmable gate arrays (FPGA) or
graphical processing units (GPU), new device
plugin development is necessary.

• Unlike the cloud computing systems, edge clusters
for Ag-IoT are resource-constrained and have
limited compute and storage resources. Therefore,
caching and data storage in local databases is more
conservative.

• Quality of service (QoS) classes for managing
workload/resource prioritization is unavailable in
K8s; our environment places more emphasis on how
prioritization is achieved and how it impacts
autoscaling, workload preemption/eviction and the
network/traffic resources used by the workloads.

Architecture
Our proposed architecture is composed of an 
operations framework and a service framework. 

Operations Framework: Our operations framework
mainly deals with managing container lifecycles for
various Ag-IoT services. For container orchestration,
we employ K8s. To deploy application microservices
on the edge computing system, we use deployments,
statefulsets and persistent volumes. K8s services
expose applications both internally (for inter-pod
communication) and externally (for communication
with the end-user). Applications are packaged as
Docker containers.

Service Framework: Our service framework employs 
a cloud-native application microservices architecture. 
We design, deploy and manage each application as one 
or more microservices. Microservices communicate 
with each other through RESTful protocols provided 
by the container orchestration system. In the present 
form, our edge microservices do not communicate with 
the cloud. We are working on integrating a message 
broker to provide an asynchronous job queuing system.

QUESTIONS?
Contact us at: deepaknadig@cse.unl.edu

ERGO: A Scalable Edge Computing Architecture for Ag-IoT
Deepak Nadig, Sara El Alaoui and Byrav Ramamurthy
Dept. of Computer Science & Engineering, University of Nebraska-Lincoln

Results
Our evaluation framework consists of a test client
interacting with ERGO over a 1GbE link. We employ
Apache JMeter [10] for functional load testing and
performance evaluation. We present the APIs’ response
times and throughput performance for an increasing
number of API requests in Figures 2 and 3,
respectively. We test the performance of our solution
by sending a fixed number of concurrent API requests
for a duration of 30 seconds. We repeat the test by
increasing the number of concurrent API requests per
second ranging between 100 to 10,000. The average
response times (Fig. 2) increase with increasing
requests/second. The peak successful transactions per
second increases until about 2000 requests/second and
then hovers in the 550-700 transactions/second range
for high request rates. We observe that our Ag-IoT
application APIs scale gracefully with increasing
number of requests per second. Thus, our edge
computing system provides predictable performance
guarantees for an increasing number of connected in-
field devices and their processing requirements.Implementation

We build a prototype system on a Raspberry Pi cluster.
The cluster manages application/service deployments
through the Kubernetes operations APIs. Our
preliminary implementation consists of two types of
services: we implement REST APIs for device
management services and Ag-IoT measurement
services. We implement our APIs on the Flask WSGI
framework. The API documentation is also exposed
using Swagger. Further, we employ response
marshalling features to format, filter and render
expected payload responses. We organize function-
specific APIs using namespaces to allow for
namespace reuse and scalability. We utilize Flask
Blueprints to manage API endpoint prefixes and
operations.

Figure 1: Proposed Edge Architecture.

Figure 2: Latency Performance.

Figure 3: Throughput Performance.


	Slide Number 1

