
On the Impact of Isolation Costs on Locality-aware Cloud Scheduling

Ankit Bhardwaj Meghana Gupta Ryan Stutsman
University of Utah

Abstract
Serverless applications create an opportunity for more gran-
ular scheduling across machines in cloud platforms that can
improve efficiency, especially if functions can be run within
storage services to eliminate data movement. However, em-
bedding code within storage services creates code isolation
overheads that offset some of those savings. We argue for a
new approach to serverless function scheduling that can look
within serverless applications’ functions, profile their data
movement and networking costs, and model the impact of dif-
ferent code placement and isolation schemes for those costs.
Beyond improvements in efficiency, such an approach would
fuel innovation in cloud isolation schemes and programming
abstractions, since a scheduler with a modular cost modeling
approach could incorporate new schemes and automatically
use them to improve efficiency for pre-existing applications.

1 Introduction
How cloud platforms allocate, schedule, and place compu-
tation is restricting the evolution of cloud computing. The
last 5 years have seen an explosion in data center network
performance, a breakdown and rethinking of CPU protection
mechanisms, and a move of applications from coarse, opaque
virtual machines (VMs) to granular serverless functions.

These three transformations have a complex inter-
relationship that could enable a new era of more efficient
systems and rapid evolution of both cloud abstractions and
mechanisms. We expose this relationship and show that ex-
plicit automated reasoning about data movement and CPU
hardware isolation costs can improve efficiency in the cloud.
In reaction, we propose a new approach to compute provi-
sioning and scheduling in the cloud that uses the emerging
visibility into (serverless) applications. It breaks down static
disaggregation of compute and storage by reasoning explic-
itly and at fine-grain about trade-offs between data movement
and code isolation costs to maximize efficiency. Ultimately,
we argue that such an approach can accelerate innovation by
automating reasoning about the costs and trade-offs of new
network transport schemes, code isolation schemes, and ap-
plications interfaces, since this yields a “pluggable” platform
that can incorporate and optimize around heterogeneous work-
loads, datasets, isolation models, and computation models.

2 Toward Granular Scheduling in the Cloud
Today, cloud providers avoid fixed allocations of compute
(AWS EC2 and Lambda; Azure VMs and Cloud Functions)
and storage resources (AWS S3, EBS, and DynamoDB; Azure

Compute
Tier

VM
App1

VM
App2

App2

Storage
Tier

App1

App2

App1

App2

App1

App2

App1

Disaggregated

A1 VM A2 VM

A1

Data Colocated
With Compute A2

Compute
Tier

Compute 
Colocated With 
Data

Storage
Tier A2

A1 A1

A2 A2

A1 A1

A2 A2

A1 A1

A2 A2

A1 A1

A2

Figure 1: Possible placements of code and data in the cloud.

Blob, Disk, and SQL) through disaggregation (Figure 1 top).
Decoupling compute and storage resources lets any VM use
any storage, improving utilization. However, disaggregation
forces data movement over the network, which has a CPU cost
and cuts into efficiency. Customer (or tenant) applications
could hold storage data locally within VMs (Figure 1 middle),
but this creates scaling challenges when more computation is
needed than a single VM can supply. Cloud providers could
also allow tenants to run VMs on the same machines that hold
tenants’ data (Figure 1 bottom), but this doesn’t work because
many tenants share a set of storage servers. Thousands of
tenants’ data are inter-mixed across many machines to ho-
mogenize load, but running thousands of different tenants’
VMs on a single machine is prohibitively inefficient. Effec-
tive efficiency is, then, determined by two things: the cost of
moving data over the network and the cost of consolidating
tenants’ storage and compute workloads on a set of machines.

Aside from heavy isolation costs, VMs are also problematic
because they are coarse and only offer a handful of placement
choices relative to the data they operate on (all shown in
Figure 1); they are opaque, so it is hard to assess what they
compute, what their inputs/outputs are and how they inter-
act with data. However, serverless functions have begun to
change this. Serverless has shown that developers are willing
to decompose and repackage applications with new abstrac-
tions that move beyond the legacy POSIX interfaces of the
past several decades.

Serverless opens up several new opportunities. First, it
shatters an application from a monolithic VM into tens or
hundreds of relatively independent pieces of computation that
can all be individually placed. Second, it creates visibility



into applications; functions’ inputs, outputs, and data interac-
tions can all be observed and attributed to granular application
pieces, creating opportunities for more intelligent placement.
Third, the new interfaces of serverless support alternate isola-
tion schemes that are less expensive than conventional VMs.
Today, cloud providers don’t exploit this flexibility, but it is
an opportunity for innovation. Finally, the interface is new
enough that it is malleable. Serverless has shown that develop-
ers are willing to adopt new abstractions if those abstractions
ease development, deployment, and scaling. This makes the
case for exploring new abstractions for computation in the
cloud that are co-designed for ease of development and low-
ering tenant code isolation costs.

These four opportunities could all be exploited today, but
today’s serverless platforms, instead, favor backward com-
patibility and classic hardware virtualization techniques for
isolation [1]. A key problem is that no single “tweak” to
the existing model can instantly and easily provide a mas-
sive efficiency benefit warranting complete rework of cloud
providers’ platforms and tenants’ existing codebases. This
is compounded by the fact that each small change to cloud
provider isolation mechanisms or compute abstractions re-
quires a ground-up rethinking of all costs and trade-offs. For
example, if a provider created a new low-cost abstraction
for embedding short functions within storage servers (for ex-
ample, via eBPF [5]), then data movement costs, isolation
costs, and function granularities would all need to be reconsid-
ered for this change in order to ensure it improves efficiency.
Hence, the missing piece that would enable faster innovation
is fully automating the reasoning needed to incorporate new
abstractions for computation, new schemes for efficient data
movement, and new schemes for low-cost code containment.

Our assertion is that it is time for a more principled ap-
proach to reasoning about the trade-off between data move-
ment and code isolation costs. This paper’s aim is to outline
a new distributed scheduling layer for cloud platforms that
transparently optimizes tenant code and data placement; such
a layer could automatically execute a tenant’s function code
directly on a storage server when it makes sense just as it
might disaggregate when isolation code costs are too great.

3 Challenges in Finer-grained Scheduling
Though serverless platforms open up new possibilities in
scheduling compute resources to lower data movement over-
heads, there are several key challenges that need to be ad-
dressed to support this type of optimization. Here, we dis-
cuss these challenges, including application decomposition,
workload characterization, provisioning schemes, isolation
mechanism costs, and function intermediate state movement.
In the following section, we outline a design that explicitly
considers these issues to try to minimize cloud application
data movement and isolation costs.

Granular Application Decomposition. To schedule and
gain visibility at a fine-grain, applications must be specified

at a fine-grain. Developers already do this today to gain the
benefits of serverless computing. Serverless applications are
comprised of a set of functions invoked by a set of triggers (e.g.
external HTTP requests, timers, internal cloud service/storage
triggers, etc.). Applications are scheduled and scaled across
cloud hardware resources on demand; subsequent and prox-
imate events for functions within an application can reuse
existing application instances [27].

In the future, applications can be augmented in some simple
ways that will give a scheduler more flexibility in minimizing
data movement and cross-function communication/invocation
costs. For example, function inter-dependencies are not speci-
fied upfront and are difficult to extract. Allowing applications
to specify or give hints about their structure and chaining (for
example, as a graph of dependencies between functions and
external services) could allow a scheduler to run functions
next to the data they plan to operate on. It could also be used
to co-schedule functions to minimize context switch and com-
munication overheads across functions within an application.
Requirement 0: Granular Visibility and Placement. Today’s
serverless platforms are already driving developers to expose
application components to cloud providers, creating the op-
portunity for better scheduling through better understanding
of their behavior, communication, and resource needs.

Workload Characterization. Colocating functions with
the data they operate on always reduces data movement, but
the benefit of this colocation depends on two things. First, re-
cent reports suggests overhead due to remote accesses occupy
22-27% of fleet-wide CPU at Google [11] with Facebook
reporting similar numbers [30], but the cost for moving data
over a network differs for different storage platforms and
networks. For example, an application with low spatial local-
ity may spread fine-grained requests for small data records
across a large set of servers; such a workload is primarily
dominated by per-request CPU costs, like request dispatching
costs. Other workloads may focus storage requests for larger
items onto a smaller set of servers, making CPU-cost-per-byte
the dominant cost factor. Complicating things, even within
a single cloud platform, many forms of networking exist all
with different costs. For example, one class of Azure VM
has an unaccelerated networking configuration and at least
three other forms of accelerated networking [20, 21]. Hence,
to minimize costs in placement a scheduler needs a detailed,
runtime-calibrated cost model to assess data movement costs.

Second, each cloud application consumes CPU time and in-
teracts with storage in a unique way. Even within one applica-
tion, some parts of an application may benefit from execution
near storage, whereas other parts may create CPU bottlenecks
at storage. Figure 2 shows this; it shows the execution of a
serverless-style function executing against a prototype stor-
age system that uses accelerated networking and a low-cost
function runtime [14]. When the function accesses more than
one data record in the store, storage server throughput is max-
imized when the function is run on the storage server since



0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1 2 4

F
u
n
c
ti
o
n
 T

h
ro

u
g
h
p
u
t

(m
ill

io
n
s
 o

f 
in

v
o
c
a
ti
o
n
s
/s

e
c
o
n
d
)

Data Record Accesses (accesses/invocation)

Client-side Function + Disaggregated Access
Server-side Function + Colocated Access

Figure 2: Throughput of a storage server (a prototype with acceler-
ated networking and a specialized, low-cost code isolation scheme)
when a serverless function is run inside and outside the server. When
functions access multiple values with a single remote function invo-
cation, running functions at the server can improve storage server
throughput by reducing networking and dispatch costs.

it reduces network transport and request dispatch overheads.
However, this is only true if the function does not contain
computationally-intensive logic. Serverless helps by giving
schedulers a more granular view of an application, creating
opportunities to place parts of an application within storage
only if they eliminate enough networking CPU cost at storage
to improve storage server throughput. However, to do this, the
scheduler needs more than just a network cost model; it must
be able to profile and assess how each function invocation
interacts with storage and uses CPU.
Requirement 1: Automated Workload Profiling. A scheduler
that can optimize placement of cloud functions near stored
data would need to build a network cost model and to inter-
nally profile data access behavior within functions. Simple
schemes we have tried purely using runtime measurement
show some gains, but more advanced modeling and predic-
tion of the impact of function inputs on outputs and data
access rates, sizes, and burstiness could be used to further
optimize function placement.

Context Switch Costs. Each different scheme for safely
isolating and executing code and each different workload has
different costs when a code execution context must be sched-
uled or de-scheduled. For example, a cloud tenant making
requests to a serverless cloud function at a low rate will ei-
ther force a CPU to remain idle in the cloud awaiting those
requests, or it will force a form of context switch to handle
those requests, increasing the effective CPU cost of each re-
quest. At low request rates one isolation scheme may be more
efficient, and at higher requests rates another isolation scheme
may be more efficient.

Hence, where a particular function should be run depends
not just on data movement and network CPU costs, but also
on the “temporal locality” of requests coming from that tenant.
That is, the “hit rate” of processing requests on a pre-existing,
active context where no context switch is needed and the cost
of context switch to schedule a context to handle the request
when there is no active context must be considered when
scheduling. Hence, to optimize, a scheduler needs to have

a global view of active compute contexts, and it needs to be
able to reason about the costs of dispatching to those contexts.

Beyond temporal locality, different protection schemes
have different context switch costs. Today’s serverless run-
times support POSIX, but practical serverless applications
rarely need to run native code using legacy I/O interfaces.
This creates a space where static analysis may be able to group
functions into those that can run safely in lighter-weight run-
times (language-level or non-VM hardware-based isolation
schemes) and those that need backward compatibility.
Requirement 2: Global, Activation- and Isolation-cost-aware
Scheduling. Minimizing data movement and network costs is
insufficient alone if function placement results in idle CPUs
or extra context switch costs per network request. Function
scheduling must maintain a fine-grained view of where func-
tion contexts are scheduled in order to reduce context switch
costs between protection domains. This is a major challenge
at scale, where requests and context switch can complete in
a few microseconds. The scheduler must also be aware of
application quality-of-service needs to understand where the
scheduler can leverage request batching to amortize context
switch and dispatching costs and where fast response times
are needed by applications.

(Re)provisioning and Placement. Trading off data move-
ment costs of different placements of function invocations
relative to data creates an NP-hard, large-scale bin packing
problem. Tenants with different resource requirements (low
CPU cost/high network use, high CPU cost/low network use)
should be placed together to improve utilization, subject to
each function’s characterized costs and data access patterns.

Complicating things, the efficiency of function isolation
schemes (VMs, containers, specialized hardware or software
runtimes, etc.) depends on several properties of the function
being contained. Specifically, for functions with high, pre-
dictable, and stable CPU use and data access patterns, VMs
with dedicated hardware resources can be most cost effective.
However, VMs have heavy-weight environments that make
them costly to start, stop, and migrate, even for applications
with (even predictably) changing resource requirements; thus,
they leave hardware under-utilized. While placing a VM
within a storage server might be efficient in certain cases, the
disruption and resource use of migration needs to be con-
sidered [13]. This makes lighter-weight runtimes like those
possible for serverless platforms attractive for automatic place-
ment tuning, especially when load is unpredictable.
Requirement 3: Explicit Workload Stationarity Modeling.
VMs are efficient when workloads are stable but costly under
change. Serverless runtimes pay extra software dispatch over-
heads, but scale more readily. Finally, creating/destroying
VMs or containers requires some initialization time and cost
along with some resources. An efficient cluster scheduler
should reason about the predictability of a workload and about
the cost of moving the computational environment and data
of applications’ functions that it is placing for execution.



LS

GLOBAL SCHEDULER

LOAD PREDICTOR

CENTRAL 
NAMING 
SERVICE

RESOURCE 
MANAGER

Request

LS

STORAGE TIER COMPUTE TIER

LS LS

LS LS

LS

LS

Local 
scheduler (ls)

INACTIVE MACHINES INACTIVE MACHINES

Figure 3: Sandstorm Architecture.

Intermediate State. Recent serverless applications have
mostly been stateless, where invocations of the same function
do not share state. VMs have historically run tenant-specific
logic, so coordinated access to shared state (e.g. held in VM
memory) by different requests is common. Intermediate state
that applications build up complicates placement decisions
if consistency guarantees are made across shared state. Syn-
chronizing intermediate state and reasoning about the costs of
synchronizing it would complicate optimization of placement.
However, today’s serverless models don’t support this (well).
Requirement 4: Stateless and Motionless Invocations. State-
less functions let each invocation of a function be placed
separately without concern for coordinating with existing in-
vocations of the same function. This makes optimization eas-
ier since placement can be decided invocation-by-invocation,
and it effectively eliminates the need for state migration. Func-
tions deemed to benefit from a new form of isolation or new
placement can have new invocations run in the new configu-
ration, letting existing invocations complete in their original
configuration. Our goal is to support an approximation of
statefulness by moving functions that keep intermediate data
near to the (function external) physical location where they
store that data rather than building a new, specialized consis-
tency scheme specifically for intermediate function state.

4 A Preliminary Design
To explore our idea, we are designing a new serverless sched-
uler we call Sandstorm that is tightly-coupled with the ma-
chines it schedules over. In most ways, Sandstorm is like
other serverless schedulers (Figure 3). It includes a load bal-
ancer/scheduler that makes machine allocation and function
placement decisions and a scheme for collecting fleet-wide
metrics to assist in scheduling. Like some other works [16,28],
it is designed to run serverless function chains and can take
into account per-function-chain-invocation hints that stati-
cally describe how functions in a particular chain are inter-
connected with one another. This lets it fuse or coschedule
operations, and it lets the scheduler know when and where

embedding the function within a storage service machine
might make sense.

One benefit of this approach is that cloud providers can
transparently improve their utilization of compute, storage,
and network infrastructure. This would allow them to consoli-
date more tenants on fewer machines while retaining their cur-
rent pricing models, which only account for CPU and memory
allocated to functions for the duration of their execution [3].

A key idea in Sandstorm is that it tries to collapse func-
tion chains into the storage tier to control data movement.
However, as we have laid out, done naively this could hurt
efficiency and create bottlenecks. This has led us to a design
centered on aggressive collection of low-level performance
data to calibrate network and isolation costs to predict load
stability; to maintain a sub-millisecond-scale view of the sta-
tus of each core across all machines; and to inform global
sub-millisecond remapping of cores/redirection of incoming
tenant requests among cores fleet-wide. This would let Sand-
storm promote and demote cores at scale in a few milliseconds
between several regimes of operation. For example, it can
remap any core in any compute-tier or storage-tier machine
to run a function on dedicated CPUs with dedicated hard-
ware network queues (via SR-IOV); or with fast, lightweight
temporal multiplexing of functions designed for software dis-
patching and low context switch cost; or by moving execution
of the function out of a storage-tier machine to a compute-tier
machine. The last option would force remote storage access
to lower code containment costs or to gain access to idle com-
pute resources. We detail some challenges and mechanisms
needed to support this kind of global optimization below.

4.1 Storage & Internal Task Dispatching
Sandstorm is unique in executing tenant-provided functions
within storage-tier servers, and this directly impacts its server-
local task dispatching. Figure 4 shows how this might work.
Internally, storage-tier servers efficiently service requests for
tenant data by polling queues that are directly filled by net-
work card (NIC); similar to other kernel-bypass-based sys-
tems, this lets the NIC assist in dispatching, avoiding cross-
core coordination and improving server throughput. All ten-
ant functions can access any in-memory tenant state directly
through shared memory, but data on other media can be ac-
cessed through runtime-provided interfaces. There is no pre-
defined split between cores used for running tenant functions
and simple read/write/get/put requests for stored data; servers
profile offered load and dynamically re-provision cores be-
tween tenant logic and storage request processing as needed.

For tenants that only run functions at storage infrequently,
the system must be able to switch between isolation contexts
at low cost. Different isolation schemes have different trade-
offs, but, for example, for certain restricted functions, fast
user-level protection schemes based on new hardware func-
tionality like Intel’s MPK [7, 9, 24, 31] can efficiently switch
between many domains on a single core even if functions



A

B
D

C

E

F

STORAGE

C B

D F

E A

C B

D F

E A

NIC

RQ SQ

SR-IOV
VF

GET/PUT()

HIGH 
FUNCTION 

INVOCATION 
RATES -> 

DEDICATED 
CPUs and NICs

LOW 
FUNCTION 

INVOCATION 
RATES -> 

SOFTWARE 
REQUEST 
DISPATCH

REMOTE 
STORAGE 

OPERATIONS

GATHER 
RDMA 

OF PER-
CORE 
STATS

RQ SQ RQ SQ RQ SQ

Figure 4: Core-level dispatching in a Sandstorm storage server.

are short-running and invoked millions of times per second
in aggregate on a CPU core. For tenants sending the heavi-
est request rates to a server, it may make sense to dedicate
whole cores with their own NIC hardware queues, avoiding
all dispatch and context switch costs. In cases where the
storage server becomes compute congested, this information
propagates back to the scheduler and some fraction of tenant
functions are redirected to idle compute capacity elsewhere
in the the cluster. In this case, detailed data movement cost
models and a function-level understanding of data access pat-
terns is key, since this results in more data movement over the
network. Hence, this should only be done when it wouldn’t
further increase the storage server’s load.

4.2 Statistics, Scheduling, & Load Prediction
To make fine-grained scheduling decisions, tenants would in-
voke functions through a scheduler handling a large partition
of tenants. For each invocation, the scheduler decides place-
ment, routing it to the correct core in the correct machine.
This placement is based on idle compute capacity; function
data access patterns; and networking, dispatch, and isolation
domain context switch costs. A tightly integrated naming
service tracks all pre-existing execution contexts for a given
function across the fleet along with placement information for
any data owned by that tenant. The scheduler looks for a cost
effective place to run a particular invocation and forwards the
invocation request to the correct core in the fleet.

Another service predicts the stability of a function’s be-
havior via history of its storage and network interactions and
CPU cost breakdowns of those interactions. Consistently
“hot” functions will trigger allocation of whole CPU cores and
hardware NIC queues for future invocations; functions that
suffer temporary load spikes can rely on software dispatching
without triggering allocation of dedicated hardware resources.

Load prediction, naming, and cost estimation require fine-
grained core- and task-level visibility — providing this with-
out creating bottlenecks and high CPU load is a challenge in
itself. Doing this efficiently will require hardware-assisted
metadata aggregation. One possibility is to have each machine
use gather DMA to collect per-core statistics with periodic
RDMA writes that push those statistics into a pre-indexed

structures within the scheduler machines. Even with more
than 1,000 machines pushing statistics and metadata each
millisecond a single scheduler machine would be sufficient.

5 Related Work
Serverless Frameworks. Since the advent of Amazon
AWS 15 years ago [4], serverless frameworks have created
a new scheme for specifying and scheduling cloud applica-
tions [3, 6, 19]. Similar open source and research frameworks
have emerged [8, 29], but they largely keep similar, cost-
agnostic scheduling policies to their industrial counterparts.

Memory Protection and Isolation. Recent work has ex-
plored new hardware-based memory isolation using MPK [7,
9, 24, 31]. Both recent research and industry efforts have
explored lighter-weight schemes for VMs and containers, es-
pecially for serverless [1,2,15,18,22], and some works specif-
ically address isolation schemes for computation embedded
near stored data [14, 26, 32]. Sandstorm avoids focusing on
specific memory isolation techniques; its goal is to separate
mechanism and policy by trying to incorporate new mecha-
nisms through an extensible cost model.

Scheduling. A great deal of research has focused on dis-
tributed scheduling for coarse-grained tasks like those in data
parallel computational analytics frameworks. Recent works
have focused on request scheduling in online applications
with high variance in per-request computational costs, for ex-
ample, to optimize latency/throughput trade-offs [10, 23, 25].
Sandstorm proposes extending these approaches to account
for inter-tenant code isolation and data movement costs in
distributed task scheduling.

6 Conclusion
Disaggregation drives cloud utilization today, but as Dennard
scaling ends, real efficiency will be increasingly important.
Future cloud platforms will need to exploit the newfound
flexibility and granularity in how (serverless) applications
are specified and scheduled to reduce data movement. How-
ever, this is difficult to get right: shipping all code to data
creates additional costs for code isolation, scheduling, and
dispatching that can more than offset the savings. In response,
we offer new ideas on how a new cost-driven approach to
scheduling compute resources can accelerate innovation in
cloud isolation schemes and programming models by letting
cloud platforms readily incorporate new schemes.

Acknowledgments
Thanks to our reviewers and our shepherd, Adam Belay, for their
feedback. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CNS-1750558. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. This work was also
supported in part by Facebook and VMware.



Discussion Topics
Our single machine in-memory store prototype shows gains
in throughput and latency when we move compute to storage;
however, showing similar benefits at scale is harder. Here are
some of the open problems and reservations we have about the
idea for which we seek input from the research community.
Client-side Caching. Caching reduces data movement
costs. Providers may get similar gains using client-side
caching instead of moving compute to storage. Caching be-
haves poorly for write-intensive workloads where most func-
tions modify data. Overall, the gain due caching depends on
the workload and data consistency model. More knowledge
about cloud-providers’ workloads would help us in deciding
if the caching is sufficient and for which classes of workloads
co-locating computation and data dominates caching.
Process Model. Dynamically placing a binary at different
locations at runtime requires small program/environment sizes
and limited/unified interfaces for accessing external resources.
Designing a new interface that is sufficient for serverless
functions is an open problem. Furthermore, standardizing
execution environments for functions so that large classes of
them can be executed in a small number of environments is a
challenge (to prevent proliferation of one-off environments
that would restrict scheduling due to high environment ini-
tialization costs). Discussion on what types of interfaces are
likely to emerge and are likely to succeed for developing real
applications would be a helpful point of feedback.
Security risks. Many schemes can provide program or
function isolation; however, verifying these schemes is hard,
especially when we cannot guarantee that hardware itself is
free from vulnerabilities [12,17]. Sandstorm’s adaptive place-
ment and adaptive protection model scheme would multiply
cloud providers’ attack surfaces. A key question for discus-
sion is what software and hardware isolation schemes are
likely to be trustworthy enough to depend on in realistic, se-
cure cloud provider platforms. For example, would verified
JIT runtimes like eBPF be (or eventually be) secure enough
to trust with containing tenant code? Relatedly, are microar-
chitectural mitigations for speculative execution attacks here
to stay, and what impact will they have on the costs of (light-
weight) isolation schemes? If flushes of microarchitectural
state dominate isolation domain switch costs, how much im-
provement could different isolation schemes provide?
Workloads. Cloud platform research is hard with little vis-
ibility into provider infrastructure and workloads. We are
always looking for input on how to validate ideas and systems
like this, including feedback on what workloads to test with
and where to find interesting workload traces.
Pricing. There is little public information about how cloud
providers decide the parameters of pricing models used to
charge tenants. Insight into pricing model strategies would
help in understanding how specific changes in cloud internals
might affect tenants’ costs.

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache,

Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight Virtual-
ization for Serverless Applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 20), pages 419–434, 2020.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18), pages
923–935, Boston, MA, July 2018. USENIX Associa-
tion.

[3] Amazon, LLC. AWS Lambda - Serverless Compute
- Amazon Web Services. https://aws.amazon.com/
lambda/.

[4] Amazon, LLC. AWS News Blog, Aug 2006. https:

//aws.amazon.com/blogs/aws/amazon_ec2_beta/.

[5] Matt Fleming. A thorough introduction to eBPF. https:
//lwn.net/Articles/740157/.

[6] Google, LLC. Google Cloud. https://

cloud.google.com/.

[7] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-Process Isolation for High-
Throughput Data Plane Libraries. In 2019 USENIX An-
nual Technical Conference, USENIX ATC 2019, Renton,
WA, USA, July 10-12, 2019, pages 489–504. USENIX
Association, 2019.

[8] Scott Hendrickson, Stephen Sturdevant, Tyler Har-
ter, Venkateshwaran Venkataramani, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. Serverless
Computation with OpenLambda. In 8th USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud 16),
2016.

[9] Intel, Inc. Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual Volume 3A:
System Programming Guide, Part 1. https:

//www.intel.com/content/dam/www/public/us/en/
documents/manuals/64-ia-32-architectures-

software-developer-vol-3a-part-1-manual.pdf.

[10] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In Proceedings of the 16th USENIX Confer-
ence on Networked Systems Design and Implementation,
NSDI’19, page 345–359, USA, 2019. USENIX Associ-
ation.

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/aws/amazon_ec2_beta/
https://aws.amazon.com/blogs/aws/amazon_ec2_beta/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://cloud.google.com/
https://cloud.google.com/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf


[11] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a Warehouse-Scale
Computer. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15,
page 158–169, New York, NY, USA, 2015. Association
for Computing Machinery.

[12] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[13] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert
Ricci, and Ryan Stutsman. Rocksteady: Fast Data
Migration for Low-latency In-memory Storage. In Pro-
ceedings of the Twenty-Sixth ACM Symposium on Oper-
ating Systems Principles, SOSP ’17, October 2017.

[14] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian
Zhang, Robert Ricci, and Ryan Stutsman. Splinter:
Bare-Metal Extensions for Multi-Tenant Low-Latency
Storage. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
627–643, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[15] James Larisch, James Mickens, and Eddie Kohler. Alto:
Lightweight VMs Using Virtualization-Aware Managed
Runtimes. In Proceedings of the 15th International
Conference on Managed Languages & Runtimes, pages
1–7, 2018.

[16] Collin Lee and John K. Ousterhout. Granular Comput-
ing. In Proceedings of the Workshop on Hot Topics in
Operating Systems, HotOS 2019, Bertinoro, Italy, May
13-15, 2019, pages 149–154. ACM, 2019.

[17] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security
18), pages 973–990, 2018.

[18] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is Lighter
(and Safer) than your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles,
pages 218–233, 2017.

[19] Microsoft, Inc. Azure Functions. https://

azure.microsoft.com/en-us/services/functions/.

[20] Microsoft, Inc. Create a Linux virtual machine with
Accelerated Networking using Azure CLI. https:

//docs.microsoft.com/en-us/azure/virtual-
network/create-vm-accelerated-networking-cli.

[21] Microsoft, Inc. Enable InfiniBand with SR-IOV. https:
//docs.microsoft.com/en-us/azure/virtual-
machines/workloads/hpc/enable-infiniband.

[22] Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Harter, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In 2018
USENIX Annual Technical Conference (USENIX ATC
18), pages 57–70, 2018.

[23] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing High CPU Efficiency for Latency-sensitive Datacen-
ter Workloads. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19),
pages 361–378, 2019.

[24] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software Abstraction for
Intel Memory Protection Keys (Intel MPK). In Dahlia
Malkhi and Dan Tsafrir, editors, 2019 USENIX Annual
Technical Conference, USENIX ATC 2019, Renton, WA,
USA, July 10-12, 2019, pages 241–254. USENIX Asso-
ciation, 2019.

[25] George Prekas, Marios Kogias, and Edouard Bugnion.
ZygOS: Achieving Low Tail Latency for Microsecond-
scale Networked Tasks. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017, pages 325–341. ACM,
2017.

[26] Michael A Sevilla, Noah Watkins, Ivo Jimenez, Pe-
ter Alvaro, Shel Finkelstein, Jeff LeFevre, and Carlos
Maltzahn. Malacology: A Programmable Storage Sys-
tem. In Proceedings of the Twelfth European Con-
ference on Computer Systems, pages 175–190. ACM,
2017.

[27] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the Wild: Characterizing and
Optimizing the Serverless Workload at a Large Cloud
Provider, 2020.

[28] Arjun Singhvi, Kevin Houck, Arjun Balasubrama-
nian, Mohammed Danish Shaikh, Shivaram Venkatara-
man, and Aditya Akella. Archipelago: A Scalable
Low-Latency Serverless Platform. arXiv preprint
arXiv:1911.09849, 2019.

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/enable-infiniband
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/enable-infiniband
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/hpc/enable-infiniband


[29] Vikram Sreekanti, Chenggang Wu Xiayue Charles
Lin, Jose M Faleiro, Joseph E Gonzalez, Joseph M
Hellerstein, and Alexey Tumanov. Cloudburst:
Stateful functions-as-a-service. arXiv preprint
arXiv:2001.04592, 2020.

[30] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F.
Wenisch. SoftSKU: Optimizing Server Architectures
for Microservice Diversity @scale. In Proceedings of
the 46th International Symposium on Computer Archi-
tecture, ISCA ’19, page 513–526, New York, NY, USA,
2019. Association for Computing Machinery.

[31] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-Process Isolation with
Memory Protection Keys. In Proceedings of USENIX
Security Symposium, 2019.

[32] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman.
Narrowing the Gap Between Serverless and its State
with Storage Functions. In Proceedings of the ACM
Symposium on Cloud Computing, pages 1–12, 2019.


	Introduction
	Toward Granular Scheduling in the Cloud
	Challenges in Finer-grained Scheduling
	A Preliminary Design
	Storage & Internal Task Dispatching
	Statistics, Scheduling, & Load Prediction

	Related Work
	Conclusion

