Model-Switching: Dealing with Fluctuating Workloads in MLaaS* Systems

Jeff Zhang¹, Sameh Elnikety², Shuayb Zarar², Atul Gupta², Siddharth Garg¹

¹New York University, ²Microsoft

jeffjunzhang@nyu.edu
Deep-Learning Models are Pervasive
Computations in Deep Learning

Modern Deep CNN: 5 – 1000 Layers

CONV Layer → Low-Level Features → ... → CONV Layer → High-Level Features → FC Layer → Classes

1 – 3 Layers

Convolutions account for more than 90% computation → dominate both run-time and energy.

Execution time factors: depth, activation/filter size in each layer

Model Development
- Prescribes model design, architecture and data processing

Training
- At scale on live data
- Retraining on new data and manage model versioning

Serving or Online Inference
- Deploys trained model into device, edge, or cloud

[Ref.] Gonzalez, J. et al., “Deploying Interactive ML Applications with Clipper.”
MLaaS: Challenges and Limitations

Maintain QoS under *dynamic workloads*.

Existing Solution
- Static model versioning
 - Tie each application to one specific model *at run-time*
 - In the event of load spikes:
 - Prune requests (new, low priority, near deadline etc.)
 - QoS violations, customer 😞
 - Add “significant new capacity” (autoscaling)
 - Not economically viable, provider 😞

Microsoft cloud use spikes 775%, testing capacity during coronavirus

- Service success rates dropped below 99.99%
- Teams suffered 2-hour outage in Europe
- Free offers and new subscriptions were limited

Opportunity: DNN Model Diversity

For the same application, many models can be trained with tradeoffs among:
Accuracy, Inference Time and Computation Cost (Parallelism)

Questions in this Study

Which DNN model to use? How to allocate resources?
Make all decisions online!

Typical SLA Objectives: latency, throughput, cost, …

Assumption: fluctuating workloads fixed hardware capacity

What is the QoS?
ML App
End Users

SLAs

sending requests
rendering predictions
What Do Users Care About?

From the users’ perspective, deadline misses and incorrect predictions are equally bad:

- User can always meet deadline by guessing randomly

Quick *and* correct predictions!
A New Metric for MLaaS

Effective Accuracy \((a_{eff}) \):

the fraction of correct predictions within deadline \((D)\)

\[
a_{eff} = p^{D,\lambda} \times a
\]

\(\lambda\): load, \(a\): baseline accuracy

Likelihood of meeting deadline

No single DNN works best at all load levels
Characterizing DNN Parallelism

As load increases, additional replicas help more than threads.
Online Model Switching Framework

Model that exhibits best effective accuracy is a function of load

<table>
<thead>
<tr>
<th>Load</th>
<th>Best Model</th>
<th>Parallelism</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4 QPS</td>
<td>ResNet-152</td>
<td><R:4 T:4></td>
</tr>
<tr>
<td>> 20</td>
<td>ResNet-18</td>
<td>...</td>
</tr>
</tbody>
</table>

Dynamically select best model (effective accuracy) based on load
Experimental Setup

• Built on top of *Clipper*, an open-source containerized model-serving framework (caching, adaptive batching disabled)
• Deployed PyTorch pretrained ResNet models on ImageNet \((R: 4 \ T: 4)\)
• Two dedicated Azure VMs:
 • Server: 32 vCPUs + 128GB RAM
 • Client: 8vCPUs + 32GB RAM
• Markov Model based load generator
 • Open system model
 • Poisson inter-arrivals

Evaluation: Automatic Model-Switching

Model-Switching can quickly adapt to load spikes.
Evaluation: Effective Accuracy

Model-Switching achieves pareto-optimal effective accuracy.
Evaluation: Tail Latency

SLA deadline: 750 ms

Model-Switching tradeoffs deadline slack for accuracy.
Thank You and Questions

Model-Switching: Manage Fluctuating Workloads in MLaaS Systems

Jeff Zhang
jeffjunzhang@nyu.edu
• How to prepare a pool of models for each application?
 • Neural Architecture Search, Multi-level Quantization

• Current approach pre-deploys all (20) candidate models
 • Cold start time (ML): tens of seconds
 • RAM overheads: currently 11.8% of the total 128 GB RAM

• Reinforcement learning based controller for model switching
 • Account for job queue status, system load, current latency
 • Offline training free

• Integrate with existing MLaaS techniques
 • Batching, caching, autoscaling etc.

• Exploit availability of heterogenous computing resources
 • CPU, GPU, TPU, FPGA