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Abstract

We analyze many facets of the performance of gVisor,

a new security-oriented container engine that integrates

with Docker and backs Google’s serverless platform. We

explore the effect gVisor’s in-Sentry network stack has

on network throughput as well as the overheads of per-

forming file opens via gVisor’s Gofer service. We further

analyze gVisor startup performance, memory efficiency,

and system-call overheads. Our findings have implica-

tions for the future design of similar hypervisor-based

container engines.

1 Introduction

OS-level virtualization, called “containerization” by

some, has emerged as a popular alternative to virtual ma-

chines as new virtualization mechanisms have become

available in Linux (e.g., namespaces and cgroups). Tools

such as Docker [18] have made it easy for novices to de-

ploy their applications using these new mechanisms.

Whereas each application running in a virtual machine

runs on its own guest operating system, OS-level vir-

tualization allows multiple tenants to efficiently share a

common OS. Although efficient, such sharing is also a

security concern; as Daniel Walsh quipped, “containers

do not contain” [24]. If the OS itself does not run in

the container, OS resources with incomplete virtualiza-

tion are vulnerable [24] and kernel bugs can be exploited

through a large attack surface (over 300 system calls) [4].

The growing popularity of OS-level virtualization has

spurred new efforts to make hypervisors as fast and as

convenient as Docker containers [2, 15, 13, 16]; for ex-

ample, Kata Containers (a hypervisor-based approach)

are advertised as providing the “the speed of contain-

ers, the security of VMs.” Other hypervisor-based sand-

boxes are being rebranded as containers as well [11, 23].

In the past, VMs and containers were easy to differ-

entiate; in 2014, for example, Merkel wrote that “to

put it simply, containers virtualize at the operating sys-

tem level, whereas hypervisor-based solutions virtualize

at the hardware level” [18]. “Extreme paravirtualiza-

tion” [15] has blurred this distinction, and the term “con-

tainer” is now frequently being used to describe any vir-

tualization platform (hypervisor-based or otherwise) that

is faster or more convenient than a traditional VM.

These new hypervisor-based container platforms may

indeed offer the “security of VMs” [13], but unless they

also provide “the speed of containers”, or something

close to it, few practitioners are likely to abandon tra-

ditional containers. Hence, an important question to ask

is what is the true performance cost of using these new

security-oriented container platforms? And how might

those costs be reduced in future implementations with-

out sacrificing security? In order to focus these broad

questions, we embark on an analysis case study explor-

ing the performance of gVisor, a new hypervisor-based

container engine that integrates with Docker and backs

Google’s serverless platform [17].

gVisor is designed so that an attacker may not gain

host access by only compromising a single subsystem.

Of course, defense-in-depth entails layering, with new

potential overheads, which we explore. gVisor also at-

tempts to minimize the attack surface (i.e., unfiltered

system calls) between gVisor and the host. Removing

commonly-exploited system calls such as socket and

open from this interface requires the primary gVisor OS

(the Sentry) to depend on a separate helper process (the

Gofer) for opening files; we measure how this strategic

splitting of the container kernel affects I/O performance.

Our findings shed light on many facets of gVisor per-

formance, with implications for the future design of

security-oriented containers. For example, invoking sim-

ple system calls is at least 2.2× slower on gVisor com-

pared to traditional containers; worse, opening and clos-

ing files on an external tmpfs is 216× slower. I/O is also

costly; reading small files is 11× slower, and download-

ing large files is 2.8× slower. These resource overheads

significantly affect high-level operations (e.g., Python

module imports), but we show that strategically using

the Sentry’s built-in OS subsystems (e.g., the in-Sentry

tmpfs) halves the import latency of many modules.

The rest of this paper is organized as follows: we pro-

vide a gVisor background (§2), analyze its performance

(§3), describe related work (§4), and conclude (§5).

2 Background: gVisor Containers

The gVisor container is designed to be a building block

in multiple environments. In addition to serving as

the isolation mechanism for GCF (Google Cloud Func-

tions) [17], gVisor implements the OCI (Open Container
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Figure 1: gVisor Architecture.

Initiative) [20] standard, used by Docker [18]. Thus,

Docker users can readily switch between the default en-

gine, runc (based on Linux namespaces and cgroups),

and the gVisor runtime engine, named runsc.

Architecture: Figure 1 illustrates the gVisor architec-

ture. The application runs on the Sentry, which both im-

plements Linux and itself runs on Linux. This Linux-

on-Linux architecture provides defense in depth. A ma-

licious application that exploits a bug in the Sentry only

gains access to a restricted user-space process; in con-

trast, a process escaping a Docker runc container might

gain root access. The Sentry has two modes for handling

system calls. In ptrace mode, the Sentry intercepts sys-

tem calls by acting much like a debugger attached to the

application. In KVM mode (more common), the Sentry

executes as a guest OS in a virtual machine.

System Calls: The Sentry exposes 211 of 319 Linux

system calls to the application. The Sentry uses just 55

unique host calls to implement those 211 calls. This nar-

rowing provides a security advantage: seccomp filters

prevent a compromised Sentry from using system calls

beyond the 55 it is expected to use. The gVisor en-

gineers identified open and socket as common attack

vectors [4], so these calls are not among the whitelisted

55; gVisor’s storage and networking stacks were care-

fully designed to avoid needing these calls.

Storage: There are three main patterns for how the

Sentry handles file-related system calls. First, gVisor

implements several file systems internally (e.g., a tmpfs,

procfs, and overlayfs); the Sentry can generally serve I/O

to these internal file systems without calling out to the

host or other helpers. Second, the Sentry services open

calls to external files (as permitted) with the help of a

separate process called the Gofer; the Gofer is able to

open files on the Sentry’s behalf and pass them back via

a 9P (Plan 9) channel. Third, after the Sentry has a han-

dle to an external file, it can serve read and write system

calls from the application by issuing similar system calls

to the host. If gVisor is running in KVM mode, the Sen-

try must switch from GR0 (Guest Ring 0) to HR3 (Host

Ring 3) to process such requests, as system calls to the

host cannot be invoked directly from GR0.
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Figure 2: Container Init/Teardown Performance.

Varying numbers of threads (x-axis) create and destroy con-

tainers concurrently. The total system throughput is reported

as containers-per-second on the y-axis.

Networking: the network stack (called netstack) is

implemented in the Sentry in Go; netstack directly com-

municates via a raw socket with a virtual network device,

typically initialized by Docker [7, 9].

Memory: A traditional OS running on a virtual ma-

chine assumes a view of “physical” memory, from which

it allocates memory for processes. In contrast, the Sen-

try is built to run on Linux and implements process-level

mmap calls by itself invoking mmap on the host [10].

3 gVisor Performance Analysis

We compare the performance of runsc (the gVisor

Docker runtime) to that of runc and native on a Cloud-

Lab 220 M4 machine [3] having two 8-core 2.4 GHz

Intel E5-2630 CPUs, 128 GB of RAM, a 10Gb NIC,

and 480 GB SSD. We use Ubuntu 16.04 (4.4.0 kernel)

and Docker 18.09.3. We explore the following ques-

tions: How quickly can gVisor start and stop contain-

ers (§3.1)? What are the overheads associated with ser-

vicing system calls (§3.2)? How do page faults affect

an application’s malloc performance (§3.3)? How does

gVisor’s user-space, Go-based network stack perform

(§3.4)? What are the overheads related to file access

(§3.5)? And finally, how are Python module imports af-

fected by gVisor’s system call and I/O overheads (§3.6)?

3.1 Container Lifecycle

In this experiment, we explore overall container lifecy-

cle performance by creating and destroying containers

as fast as possible. We execute long enough to achieve

steady state since prior work [5] shows container de-

struction has significant asynchronous overheads. With

no concurrency, the total setup and teardown times are

1.014s for runc, 1.117s for gVisor+KVM, and 1.181s for

gVisor+ptrace. Figure 2 shows the result when multi-

ple containers are created and destroyed concurrently by
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Figure 3: System Call Overhead. The bars show the

average latency for gettimeofday across 100M executions.

a varying number of threads. All systems scale poorly;

runc achieves at most 2.6 containers/second, and runsc

achieves 2.3 containers per second.

Implications: Although gVisor is designed for high

container density per machine, our experiments show

runc will be slightly more performant for high-churn

workloads. With respect to startup, gVisor’s KVM and

ptrace modes are comparable.

3.2 System Calls

Depending on the system call, the Sentry may handle it

internally, invoke a call on the host, or get help from the

Gofer. In order to compare the overheads across these

scenarios, we implemented three versions of the same

system call (gettimeofday) inside gVisor, and com-

pared the performance to the same call in runc and native.

Figure 3 shows the average latency for native, runc,

and gVisor. For gVisor, we show every combination

of runtime mode (KVM or ptrace) and implementation

pattern (Sentry only, invoke on host, and get help from

Gofer). Whereas runc is only 32% slower than native,

the fastest gVisor result (Sentry-only on KVM) is 2.8×

slower. In KVM mode, calling to the host is 9× slower

than operating just within the Sentry, and calling to

the Gofer is 72× slower. ptrace latencies are 42-232×

slower than native latencies.

Implications: Our results confirm previous observa-

tions that workloads heavy on system calls may “have

some pain” on gVisor [26]. System calls that cannot

be handled solely by the Sentry (i.e. opening or read-

ing a file on the host) may have degraded performance.

System-call heavy workloads should avoid ptrace mode.

3.3 Memory

gVisor is designed to have a memory footprint of just

15 MB [4]. Of course, an application that grows its

memory footprint beyond the originally allocated physi-

cal memory triggers page faults, a process in which the

Sentry must sometimes be involved [10].
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Figure 4: Malloc Performance. Results are shown for

both native and gVisor experiments, with and without touching

the allocated memory.
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Figure 5: Network Throughput. Throughput is mea-

sured by downloading files of varying sizes (x-axis) with wget.

We stress the memory system with a benchmark

that performs 100K allocations of varying sizes using

malloc. We experiment with both accessing all the

pages of allocated memory or not accessing them. The

benchmark never frees any allocations. Figure 4 shows

gVisor achieves 40% the allocation rates of the native ex-

periment. For large allocations (e.g., 1 MB), the native

experiment achieves 29.3 billion allocations per second

as long as the allocated memory is not touched. In con-

trast, gVisor’s rate approaches zero, suggesting gVisor’s

allocation does work more eagerly than the native setup.

Implications: Memory-heavy applications can be ex-

pected to experience significant slowdowns on gVisor. It

is worth investigating whether allocating and mapping

memory in larger batches could decrease the Sentry’s in-

volvement and provide performance closer to native.

3.4 Network

The socket system call was identified as a commonly

exploited attack vector by the gVisor team [4]; gVisor

guards against such attacks by relying on a user-space

networking stack, called netstack [19].



native runc gV+Int gV+Ext
0

100

200

300

400

500

600
L
a
te
n
cy

 (
M

ic
ro

se
co

n
d

s)

28.4

518

2.04 2.40

Figure 6: Open and Close Latency. Results are an aver-

age over 100K consecutive accesses to the same file on native,

runc, internal tmpfs (gV+Int), and external tmpfs (gV+Ext).

4KB 16KB 64KB 256KB 1MB

Read Size

0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t 
(G

B
/s
) native

runc

gV+Int

gV+Ext

Figure 7: Read Throughput (tmpfs). The x-axis shows

the read size. The right two bars in each group are for gVisor.

We evaluate the network performance by download-

ing files of varying sizes (from 1 MB to 1 GB) from a

speedtest site using wget; Figure 5 shows the result: for

the 1 GB file, gVisor’s KVM platform achieves about

34% of the throughput achieved by the other systems.

gVisor’s ptrace platform performs slightly better (it is un-

clear why), yet is still only 54% as fast as the other sys-

tems. For small downloads (e.g., 1 MB), gVisor through-

put is comparable to other systems.

Implications: gVisor’s netstack handles small down-

loads well, but scales poorly. However, the slowdowns

we observed were not as severe as those previously re-

ported [26], agreeing with the assessment in gVisor’s

documentation that the “network stack is improving

quickly.” [8]. It will be worthwhile to revisit these mea-

surements as the implementation matures.

3.5 Storage

We now measure gVisor’s file performance, both on the

Sentry’s internal tmpfs, and on an external tmpfs on the

host, accessed via the Gofer. To start, we measure the

latency of opening and closing a file without performing

any I/O requests. As Figure 6 shows, opening and clos-
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Figure 9: Write Throughput (tmpfs). The x-axis shows

the write size.

ing a file on an external tmpfs is 216× slower than mak-

ing the same accesses from a runc container, suggesting

routing through the Gofer is a major bottleneck. Access-

ing a file in the Sentry’s internal tmpfs is faster than the

external accesses, but is still 12× slower than runc.

We measure read throughput by performing 100K se-

quential reads (of varying size) to a large in-memory file.

Figure 7 shows that gVisor performs poorly for small re-

quests, but access to the internal tmpfs becomes compet-

itive for request sizes around 64 KB and throughput to

an external tmpfs becomes competitive around 1 MB.

For the two gVisor bars shown in Figure 7 (gV+Int

and gV+Ext), we investigate further by tracing KVM exit

events. We observed two common types of KVM exits:

user-space exits (which occur when the Sentry switches

rings to invoke host system calls) and page faults. Fig-

ure 8 shows the frequency of these two events for the

two workloads. User-space exits approach zero for in-

ternal accesses as the request size increases; user-space

exits are constant for the external workload, though more

bytes are read per exit at larger sizes. Page faults increase
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Figure 10: Python Import Latency. We measure the time

to import various modules (along x-axis) without containers,

with runc, and with gVisor. With containers, we show perfor-

mance with a host tmpfs volume mount (both runc and gVisor)

and Sentry tmpfs mount.

in both cases for larger requests.

Figure 9 repeats the Figure 7 experiments, but for

writes. For large requests, access to the internal tmpfs ac-

tually outperforms runc. KVM exit patterns were similar

for the internal write and read experiments (not shown).

For external writes, user-space exits were still constant

around 100K, though there were almost no page faults.

Implications: gVisor I/O involves significant switch-

ing between modes and processes, and the resulting

throughput suffers for opens and small I/O requests. Our

results show that an internal tmpfs significantly improves

performance; for stateless workloads (e.g., Google Cloud

Functions), this appears a good option.

3.6 Python

Google’s latest Python runtime for its serverless platform

is based on gVisor [17], and importing Python modules

is a significant cold-start bottleneck for serverless appli-

cations [5]. We now explore import costs in gVisor.

We measure module import latency for nine popular

Python modules using each platform, showing the re-

sults in Figure 10. We observe that imports on gVisor are

usually 2-4× slower than for runc when gVisor is using

an external tmpfs; when using its internal tmpfs, gVisor

sometimes outperforms runc.

Given gVisor’s known issues with I/O performance,

we measure the number of mmap calls made during each

import experiment, showing the results in Figure 11. We

observe that the four modules causing the most mmaps

(flask, matplotlib, numpy, and setuptools) were also the

slowest for importing modules on gVisor+Ext.

Implications: We have shown that importing Python

modules from the Sentry’s prepopulated internal tmpfs is

40% to 70% faster than fetching modules from an exter-
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Figure 11: Number of mmap. The dashed line indicates

mmap calls during Python startup with no imports (the portion

of bars above the line indicates module-specific mmaps).

nal tmpfs. This suggests that Python workloads will ben-

efit from mechanisms that make application resources

available inside a container through some means other

than the Gofer and the regular I/O stack.

4 Related Work

Other lightweight hypervisor-based container systems

have also been recently implemented using KVM, in-

cluding Kata Containers [12, 26] and Amazon’s Fire-

cracker [2, 27], which backs AWS Lambda. LightVM

is a re-design of Xen aimed at booting unikernels in-

side lightweight VMs quickly [16]. The funnel-shaped

architecture of gVisor’s Sentry resembles that of Draw-

bridge [21]. Prior to gVisor’s netstack, the GoNet project

implemented a user-space network stack in Go [22].

Many prior measurement studies have explored con-

tainer performance in different scenarios [1, 14, 25]. Fel-

ter et al. [6] did a recent comparison of containers and

virtual machines, and a talk by Wang [26] highlighted

some of the performance tradeoffs between gVisor and

Kata containers.

5 Conclusion

gVisor is arguably more secure than runc, as a com-

promised Sentry only gives an attacker access to a

user-space process severely limited by seccomp filters,

whereas a compromised Linux namespace or cgroup

may give an attacker access to the host kernel. Unfor-

tunately, our analysis shows that the true costs of effec-

tively containing are high: system calls are 2.2× slower,

memory allocations are 2.5× slower, large downloads

are 2.8× slower, and file opens are 216× slower. We

believe that bringing attention to these performance and

scalability issues is the first step to building future con-

tainer systems that are both fast and secure.
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