
Carving Perfect Layers out of Docker Images

Dimitris Skourtis
IBM Research

Lukas Rupprecht
IBM Research

Vasily Tarasov
IBM Research

Nimrod Megiddo
IBM Research

Abstract
Container frameworks such as Docker have changed the

way developers package, share, and deploy applications. Con-
tainer images form a cornerstone of this new model. Images
contain applications and their required runtime dependencies
and can be easily versioned, stored, and shared via centralized
registry services. The ease of creating and sharing images has
led to a rapid adoption of container technology but registries
are now faced with the task of efficiently storing and serving
millions of images. While in theory identical parts of Docker
images can be shared across images and stored only once as
layers, in practice this provides limited benefits as layers are
rarely fully identical.

In this paper, we argue that Docker image layers should be
reorganized in order to maximize their overlap and, thereby,
reduce storage and network consumption. This argument is
based on the observation that many layers only differ in a
small number of files but would otherwise be identical. We
present a set of design challenges that need to be solved when
realizing such a reorganization approach, e.g., how to opti-
mally reorganize layers, how to deal with the scale of current
registries, and how to integrate the approach into the container
image lifecycle. We then present a mathematical formulation
of the problem and evaluate it on a set of real Docker images.
Our preliminary results provide storage savings of 2.3×, and
indicate that promising network savings are possible.

1 Introduction

Containers have played a pivotal role in realizing the cloud
native vision [16]. In this vision, developers deploy their
applications without worrying about infrastructural concerns
such as resource provisioning, availability, or scalability, and
thereby, place more focus on application logic. Due to their
portability and low overhead compared to virtual machines,
containers provide a perfect management unit to assemble
cloud native applications. They can be spawned fast, moved
easily, and deployed with high density [33].

While containers have been available in Linux for more
than a decade [26, 30], the advent of containerization frame-
works such as Docker [5] has drastically increased their popu-
larity. Docker provides a management layer, which facilitates
the process of packaging, shipping, and deploying applica-
tions as containers. Developers use Docker to create container

images, which encapsulate an application and all its required
runtime dependencies. Images consist of a set of layers, each
containing part of the image contents (a subset of files). Im-
ages can be versioned and tagged, and shared in a container
registry such as Docker Hub [6], and pulled from the registry
to be deployed on a Docker-enabled host. This process sig-
nificantly simplifies the sharing and deployment of software
across environments.

The ease of packaging applications in Docker images has
resulted in an explosion of the amount of available images.
For example, Docker Hub contains more than 2 million public
images alone [7], which combined occupy hundreds of TB
of storage space. Additionally, every day more than 1,500
images are added [13]. As containers are becoming a major
option of distributing and deploying applications on premises
and in the cloud, this trend is only expected to continue.

The large size and growth rate of registries is challenging
to deal with for the underlying storage infrastructure [23, 28].
To reduce the amount of stored data, Docker uses a content-
addressable storage scheme which allows to identify duplicate
layers and only store a single copy of each. This can reduce
the storage utilization on the registry and end hosts, and the
network in between as the same scheme can be applied to
locally stored images. In practice, however, we found that
only some layers are equal, which diminishes the potential
storage savings. For example, of the 10,000 most popular
Docker Hub images, consisting of 104,667 layers, only 36%
of the layers were identical, resulting in storage reduction of
only 1.48× while still comprising 80% duplicate files.

One approach to combat the growing storage requirements
of a registry is to use deduplication-capable storage. Such
solution, however, reduces neither the network traffic nor the
client storage footprint. We argue that to optimize container
image storage, we need to change the way image layers are
constructed. If we can rearrange the contents of existing lay-
ers, we can maximize their overlap and increase their reusabil-
ity across images. This argument is based on the observation
that often, layers are “almost equal”, i.e. they only differ in
few files while the bulk of the data is identical. If we can split
“almost equal” layers into their shared and unique contents,
we can reuse the newly created shared layers in more images
and thereby, reduce storage utilization and network traffic.

In this paper, we present an initial approach for optimizing
container image layers for reusability. Implementing such an
approach poses several questions and challenges, which we

lay out in detail in §4. Our aim in this paper is not to provide
concrete answers to all of them but rather demonstrate the fea-
sibility and potential benefits of a layer rearrangement. Hence,
we focus on the questions of how layers could be rearranged
and how an optimal rearrangement might be computed.

To answer the first question, we formulate an optimiza-
tion problem (§5). As the numbers of parameters can be in
the order of millions, instead of using a solver, we develop
a greedy algorithm based on a cost function that considers
storage, network, and image depth. We evaluate our approach
on a sample dataset of 100 images downloaded from Docker
Hub (§6). The dataset comprises a total of 855 layers with
an initial storage redundancy of 3.14×. After computing a
rearrangement, the resulting layers have a redundancy of only
1.33× while also increasing network savings.

2 Background

Docker containers are managed by the Docker daemon. To cre-
ate a container, the daemon first has to retrieve the container’s
image from a centralized image registry. In this section we
provide relevant background information about the structure
of Docker images and the role of the image registry.

Docker images. A Docker image contains directories and
files that form the root file system of a container. An image
consists of a stack of read-only layers, each holding some
portion of the container’s root file system. As different image
layers can contain files with the same name and path, layers
are ordered and only the file in the highest layer will be dis-
played as part of the root file system. Special whiteout files
can be placed in higher layers to mask files from lower layers.

When the Docker daemon starts a container, it creates a
writable layer on top of the read-only layers. The writable
layer is empty at the start of a container but accumulates
changes (e.g., modified or newly created files) as the container
updates its root file system. Changes from existing layers are
stored in the writable layer via copy-on-write. To unify layers
into a single logical file system, the Docker daemon employs
overlay technologies such as Overlayfs2 [11] or Aufs [3].

Image registry. Docker images and their layers are stored
in public (e.g., Docker Hub [6]) or private, organization-
managed registries. Images in a registry are bucketed in per-
project repositories and each repository contains tagged im-
ages. For example, the ubuntu repository in Docker Hub con-
tains images tagged with 18.04 and devel (among others).
The majority of repositories store an image tagged latest,
containing the latest version of the corresponding application.

Layers are stored in the registry and transferred to clients
in compressed tar form and have an associated layer ID. The
ID is based on the layer content and hence, uniquely identifies
each layer. This allows both the registry and the Docker dae-
mon to detect duplicate layers and only store a single copy of
a layer. A single layer can be referenced by multiple images.

When the Docker daemon downloads an image, it first
requests an image manifest from the registry. The manifest,
among other information, contains the ordered list of layer
IDs, which are used by the daemon to download the layers
that are not yet present in client’s storage. When pushing a
new image to the registry, the daemon first uploads the layers
missing in the registry and then the manifest referencing them.

3 Redundancy in Image Registries

The increased popularity of containerized software drives
the storage requirements of modern image registries to new
heights. As of March 2019, the Docker Hub registry lists
over 2 million public repositories. In raw format, the 10,000
most popular images already occupy over 5.3 TB of space.
Grossly underestimating that each repository contains only
one image, the public part of Docker Hub would utilize at
least 1 PB of storage! The actual number, accounting for
private repositories and multiple images per repository, is
likely several times higher and will continue to grow in the
foreseeable future.

To cope with such massive amounts of data, Docker cur-
rently applies two data reduction techniques. First, images
are split into layers, allowing a single layer to be shared by
multiple images. Second, every layer is independently com-
pressed using local compression. Based on the 10,000 most
popular images, our estimates show that layering decreases
the dataset size by 1.48× while compression provides an ad-
ditional 2.38× reduction, totaling to an overall reduction of
3.54×. While this results in a smaller estimated 1 PB/3.54 =
290 TB dataset, it still requires a hefty storage infrastructure
budget. For example, if an organization uses AWS S3 stan-
dard storage, its annual cost of storing these images would be
$75,000–$130,000 depending on the AWS region [2]. Addi-
tionally, there can be significant networking costs.

The problem is especially acute for companies providing
registries as a service, such as Docker Hub [6], Jfrog Artifac-
tory [10], Quay [12] and cloud providers [1,4,8,9]. However,
other organizations that resort to maintain their own registries
(e.g., for security and performance concerns) are also sensitive
to the high cost of maintaining storage for container images.

We make two observations that explain why registry
datasets contain significant unexploited redundancy. First,
unlike earlier approaches to software packaging (e.g., RPM
or DEB [19, 25]) Docker images must remain self contained.
As a result, the images of completely unrelated programs may
rely on common components and hence, contain duplicate
files. For example, by looking at files >1 MB in our 10,000
image dataset, we found that libraries such as libslang,
libstdc++, or libc are present in over 1,000 images.

Our second observation is that existing layering cannot
catch all redundant files. In our sample dataset, 67,047 unique
layers in 10,000 images still contain almost 80% duplicate
files! This is due to the fact that developers create their images

independently and hence, often end up with layers that share
a large number of but not all files with existing layers.

We further notice that while existing file-level deduplica-
tion approaches [18, 27, 29] could be used to reduce storage
utilization at the registry, they are not sufficient due to two
main reasons. 1) Registry-side deduplication does not reduce
the amount of network traffic between the registry and clients.
Furthermore, the clients still store the images in their origi-
nal, non-deduplicated form and therefore, require excessive
storage space. These limitations could be addressed by co-
ordinating the deduplication process between the client and
the registry. However, this would require client-side changes
which is overly disruptive. 2) Deduplication can add signifi-
cant memory, CPU, and I/O overhead. On a layer push, the
deduplication-capable registry would need to decompress
the layer, compute the hashes of all files, and update the in-
memory and on-disk hash index. On a layer pull, the layer
needs to be reassembled again from its segments triggering
multiple per-file I/Os. This increases registry infrastructure
cost and detriments image pull and push times.

4 Design Considerations

We argue that, to effectively reduce storage consumption in
container registries, an intelligent image registry that can re-
arrange layers to increase their reusability is necessary. Such
a registry analyzes its contents and computes new optimal
layers that can be assembled to form existing images. The
primary motivation for the optimization is to reduce the reg-
istry’s storage footprint while keeping the layered structure
of images. However, the problem is multi-dimensional and
other aspects need to be taken into account. For example, a
straightforward approach would be to keep a layer per file.
Since every layer is content addressable, no duplicate files
will be stored. The problem with this approach is that images
would consist of a very high number of layers (as many as
there are files in an image) and unification technologies on
the client side experience performance overheads when many
layers are merged [22]. Therefore, we would like to limit the
number of layers per image while still eliminating as much
redundancy across files as possible.

Below we identify a set of important questions that arise
when designing such a registry and present our preliminary
thoughts on addressing them.

Challenge 1: How to rearrange layers in order to minimize
redundancy? Computing a rearrangement is the core chal-
lenge and has various dimensions and constraints to ensure
correctness and performance. First, no files can be removed
from existing images. While new files can be added, those
should be minimized to keep image sizes small. Additionally,
the number of layers per image should not increase signifi-
cantly. We provide an initial formulation of this challenge as
an optimization problem, which allows us to capture the most
important constraints and reason about its feasibility (§5).

Challenge 2: How to compute a rearrangement efficiently
at scale? Modern registries contain billions of files and mil-
lions of layers and images. Computing an optimal rearrange-
ment at that scale might be infeasible and hence, more efficient
methods are required. There are different ways of making the
problem tractable, e.g., relaxing less important constraints,
using fast heuristics, or computing partial rearrangements
on smaller subsets of images. Each approach comes with
its trade-offs, which need to be analyzed and evaluated. We
demonstrate the cost and quality of a rearrangement based on
our problem formulation in §6.

Challenge 3: What is the impact on Docker clients? Rear-
ranging layers and images necessarily affects the clients who
consume those images. The best way to deal with this distur-
bance is an open challenge. It is unclear, whether the changes
should be completely transparent to the client, or if clients can
be included in the rearrangement process. Inclusion options
range from using client data to determine subsets of images
to rearrange, computing partial rearrangements on the clients
themselves, or even guide clients to construct better layers in
the first place. Here, we only focus on the case of computing
a registry-wide rearrangement without involving clients.

Challenge 4: When should a rearrangement be computed?
A container registry is in constant churn so rearrangements
become suboptimal after a certain time and need to be re-
computed. Dealing with this churn comes with several ques-
tions such as how frequently should layers be rearranged,
should recomputation happen in online or offline mode, and
can optimization happen incrementally based on the previous
rearrangements. So far, we only deal with computing an ini-
tial rearrangement to demonstrate the potential benefits but a
complete solution needs to be able to address the churn.

Challenge 5: What is the acceptable impact on images?
Layer restructuring might change the order of layers in an
image, which can lead to new images that are not perfectly
equal to their original ones. This is due to the way Docker
deals with duplicate files inside a single image, i.e. using layer
ordering to deal with identical file names and whiteout files to
mask deleted files. Hence, a rearrangement solution needs to
ensure, that added files and layer order changes do not cause
existing files to change or disappear. Another consequence
is the breaking of the existing layer chain in images and thus
the image history.

5 Optimizing Layers

In this section we formulate the problem of registry rearrange-
ment and then describe the algorithm we developed as a first
step towards the solution.

5.1 Problem Formulation
A registry stores and serves images over the network. It is in
the interest of a registry to reduce storage redundancy as well

…

…

Li1 Li2 LiI

Fi1 Fi2 FiF

Ii

(a) Layer per file,
high operations cost

…

Ii

Li

Fi1 Fi2 FiF

(b) Layer per image,
high storage cost

…

…

I1 I2 II

L

F1 F2 FF

(c) All files in a single layer,
high network cost

Figure 1: Motivating examples of optimal (but undesired) solutions when optimizing only for a subset of costs.

as network traffic. Additionally, it is beneficial to keep images
“shallow” (small number of layers per image) for performance
reasons. To illustrate the above points, consider three possible
structuring solutions as shown in Figure 1. Note that these are
undesired solutions and only presented here to motivate the
problem formulation.

In the first solution (Figure 1a), each file is put in a sepa-
rate layer. This eliminates storage redundancy and optimizes
network cost. However, the total and per-image number of
layers becomes significantly high (e.g., the top-100 images
in Docker Hub have an average of only 8.55 and a maxi-
mum of only 21 layers). The high number of layers incurs
performance overhead which we refer to as operation cost.

In the second solution (Figure 1b), each image consists of a
single unique layer with all required files. This is ideal for the
operation cost, however, there can be significant redundancy
across the layers, and the network cost is non-ideal for the
registry as there is no layer reuse at the client side. In the third
solution, there is only a single global layer in the registry, con-
taining all files (Figure 1c). Though unrealistic, this solution
demonstrates that optimizing solely the registry storage and
operation cost can lead to unacceptable network cost.

From the above we identify three costs: storage, network,
and operation. The total cost, to be minimized, may be ex-
pressed as a linear combination. Next, we present a mathe-
matical formulation of the problem. The model takes the file
sizes and per-image pull frequency into account.

Denote by I the set of images, by J the set of layers,
and by K the set of files. Denote by E the set of pairs
(i,k)(i ∈ I,k ∈ K) for which image i requires file k. Addi-
tionally, denote by gk the size of file k, and by fi the (usage)
frequency of image i. We are looking for the solution consist-
ing of boolean decision variables x j,i, yk, j, and zi, j,k, where
x j,i = 1 if and only if layer j is in image i, yk, j = 1 iff file
k is in layer j, and zi, j,k = 1 iff layer j is in image i and
file k in layer j. We define a cost function to minimize as
a weighted combination of storage, network, and operation
costs: cost = α∗operation+β∗ storage+ γ∗network. The
operation cost counts the number of image-to-layers edges
(weighted by image frequency), expressed as operation =

∑i fi ∑ j x j,i. The storage cost counts the number of files,
or layer-to-file edges (weighted by file size), expressed as

storage = ∑k gk ∑ j yk, j. The network cost counts the num-
ber of image-layer-file paths (weighted by image frequency),
expressed as network = ∑i fi ∑ j ∑k gkzi, j,k. The constraint of
this problem is to satisfy the image-to-file edges, E, i.e., post
rearrangement, an image must contain all of its original files.

5.2 Computing New Layers

Given the above formulation, it is possible to compute an
optimal solution using a mathematical optimization software
for integer programming problems [15,20]. However, for large
datasets, the problem can quickly become infeasible due to its
large variable space. Hence, as an initial solution, we develop
a greedy algorithm using the above cost function. Note that
other algorithms may be applicable and exploring them is left
as future work.

Our algorithm starts with an empty set of layers and con-
structs layers based on the requirements in E. It does not
use the layers in the existing registry structure or take hints.
The algorithm considers all files in a random order. For each
file it iterates over the images requiring it, and either picks
an already created layer (not necessarily referenced by the
image) or creates a new one.

There are five cases to guide this decision as illustrated in
Figure 2. Each case comes at a different cost depending on
the state of the solution up to that point. In case 1, we consider
using an existing layer l, created in a previous step, already
containing the current file (solid line) but not yet referenced
by the image (dotted line). The case requires the addition of a
new edge from the image to l (converting the top dotted line
to solid). In this case, the operation cost would increase by 1
as we add an image-to-layer edge, the storage cost remains
unchanged, while the network cost depends on the files al-
ready contained in l. That is, if we connect image i to layer l,
image i will need to serve additional files. If those additional
files are needed by image i we discount them, otherwise, we
would create too many layers unnecessarily. Table 1 describes
all five cases. Once all cases are evaluated, we select the layer
with the minimum incremental cost. Note that the described
algorithm does not account for layer reordering (see §4, Chal-
lenge 5). The algorithm, however, may be extended to skip
edges that create incorrect orderings.

L L LL L

I

F

C
as

e
2

C
as

e
1

C
as

e
3

C
as

e
4

C
as

e
5

new
existing

new
layer

Figure 2: Cost cases. Solid lines show existing relationships
between images, layers, and files. Dotted lines indicate the
connections that the corresponding case proposes to add.

Case Addition Oper. Storage Network
1 (i, l) 1 0 |Files(l)|−

|Files(l) required by i|
2 (l, f) 0 1 |Images(l)|−

|Images(l) requiring f |
3 − 0 0 0
4 (i, l),(l, f) 1 1 Network(Case1)+

Network(Case2)+1
5 l,(i, l),

(l, f)
1 1 0

Table 1: Per-case costs based on counting.

6 Evaluation

In our experience the algorithm can scale to hundreds of thou-
sands of files. However, due to the network cost computation,
the performance degrades beyond that. Due to this limita-
tion we only use a subset of the dataset described in §3 for
the evaluation (we leave further algorithm improvements as
future work). We use the 100 most popular images (tagged
:latest and for amd64 architecture) with a total of 855 lay-
ers from Docker Hub. The total number of files is 1,559,901
out of which 495,697 are unique, giving a maximum possible
storage saving of 3.146×. The total number of layers is 855
yielding an average of 8.55 layers per image. The redundant
network rate, i.e. files in images shipped but not needed due
to layer ordering, is 1.014. Finally, the storage redundancy of
this dataset is lower compared to the 80% of the larger 10,000
image dataset from §3, lowering the potential savings.

Setting (α,β,γ) Oper. Storage Network
1 (1.0,1.0,1.0) 2.39 1.78 1.053
2 (1.0,1.0,0.5) 2.27 1.75 1.145
3 (1.0,0.5,1.0) 2.24 1.79 1.04
4 (0.5,1.0,1.0) 9.15 1.33 1.018
- original 8.55 3.14 1.014

Table 2: Oper., storage, and network overhead comparison.

We focus our evaluation on the case where fi = 1 and
gk = 1. In other words, we ignore the file size and image
frequency options so that interpreting the results is possible
without additional analysis. In our first experiment we set

α = β = γ = 1 and run our algorithm over 100 images and
400,00 files. The resulting structure has a file redundancy of
1.78 (compared to 3.14), network redundancy of 1.05 (com-
pared to 1.014), and average image depth of 2.39 (compared
to 8.55). Hence, in this case we reduce storage by 1.76×while
increasing network cost moderately. Lowering α to 0.5 lowers
file redundancy further to 1.33 (vs. 3.14), improves network
redundancy to 1.018 (vs. 1.014), and increases average image
depth to 9.15 (vs. 8.55). Hence, we reduce files by 2.3× and
merely increase network cost or image depth. Similarly, one
may adjust the importance of storage and network cost as
shown in Table 2. For example, lowering the network cost
by setting γ = 0.5 increases the network overhead. To com-
pute the network cost, we assumed each image is pulled by
a separate client. This constitutes the worst case as no client
savings are possible. Increasing the number of images pulled
per client would result in lower network cost as clients would
benefit from the improved layer shareability.

7 Related Work

It is well accepted in the industry that storage options and
architectures for containers remain challenging [24] and a
number of research studies have been published on this topic
in recent years [13, 14, 17, 21–23, 28, 31, 34–36]. Some fo-
cused on analyzing and improving performance of the client-
side ephemeral storage [31, 32, 34, 35] and external Docker
volumes [14], while others proposed to distribute images
in peer-to-peer fashion [23, 28] or use a distributed storage
system to share images across clients [17, 36]. Anwar et al.
analyzed Docker registry workloads and proposed effective
registry-side caching and prefetching techniques to improve
image pull latencies [13]. To reduce container start-up times,
Slacker [22] and CernVM-FS [21] transfer image blocks to
the clients lazily on access. These works are orthogonal to
our proposition. To the best of our knowledge, we are the first
to propose exploiting high file redundancy across layers by
restructuring them in the registry.

8 Conclusion

We argue that a storage crisis is coming for container reg-
istries due to the increasing amount of images generated each
day. Docker’s current approach of sharing layers across im-
ages to reduce storage utilization is ineffective. We believe
this is due to the fact that developers create images indepen-
dently without considering already existing layers, resulting
in many “almost equal” layers. Hence, we argue that the reg-
istry needs to provide logic to rearrange and combine layers
to improve their shareability. This problem, however, is multi-
dimensional and requires a holistic approach. We presented
an initial approach based on an optimization problem formu-
lation, and showed its potential to improve storage efficiency.

Discussion for HotCloud’19

By presenting our preliminary work at HotCloud’19 we hope
to receive actionable feedback on the work, discuss several
controversial points, and debate on the open issues.

Feedback we hope to receive. We expect to get feedback
centered around the following three questions:

1) Is this the right way of tackling the problem? In this
paper, we advocate for a layer restructuring solution to op-
timize storage in the registry (and, indirectly, at clients). As
we demonstrate, such a solution is complex. We chose this
design to stay compatible with the current format of Docker
images, however, one may wonder if the image format itself
is the right choice or if it can be improved to become more
storage efficient. For example, instead of having fixed layers
stored in the registry, layers could be constructed on-the-fly
as part of an image pull request, based on what data the client
already has stored locally.

2) Should we hide rearrangement from clients or actively
involve them? As we describe in Challenge 3 in §4, the rear-
rangement approach might affect resulting images and hence
clients. We hope to receive feedback from the audience on
whether clients should be aware of this fact or rearrangement
should happen transparently. Client awareness can improve
the rearrangement but it may also complicate operations.

3) What is the experience of registry providers in terms of
the amount of generated image data? Finally, we would be
interested in collecting feedback on how registry administra-
tors currently deal with the large amount of images. Has this
been a problem so far or are there more pressing issues to be
solved when operating a large-scale container registry?

Controversial points and discussion. We think the most
controversial point we make is to opt for an application-aware
solution rather than a storage-based solution, such as file dedu-
plication. We think this is necessary to provide client-side
benefits, i.e. what we call network cost and operation cost
in our problem formulation. However, one may argue that
deduplication is a tried-and-true technique which can solve
the problem without additional complexity. We hope we can
stir discussion in that area.

The other point of discussion we hope to generate is on
the rights and wrongs of the current Docker storage format as
described above. Is the current layered format really the best
choice or do we need a redesign? What are the benefits of the
current design and what are possible alternatives?

Open issues. As described in §4, there are several open
issues that need to be addressed to implement a complete
solution, including the questions of how to include the client,
scale the approach up, incrementally compute rearrangements,
deal with layer reordering, etc. These are directions we hope
to tackle in the future.

The most pressing issue is whether the approach can be
scaled to actual registry sizes of millions of images. As we
have shown, the problem formulation is complex and algo-
rithms can already take hours to complete on relatively small
datasets. Even though we remain positive about achievable im-
provements, if an efficient way of computing a rearrangement
is not possible, our approach would be infeasible.

References

[1] Amazon Elastic Container Registry. https://aws.
amazon.com/ecr/.

[2] Amazon S3 Pricing. https://aws.amazon.com/s3/
pricing/.

[3] AUFS - Another Union Filesystem. http://aufs.
sourceforge.net.

[4] Azure Container Registry. https://
azure.microsoft.com/en-us/services/
container-registry/.

[5] Docker. https://www.docker.com/.

[6] Docker Hub. https://hub.docker.com/.

[7] Docker Hub Image Index. https://hub.docker.com/
search?q=\&type=image.

[8] Goole Cloud Container Registry. https://cloud.
google.com/container-registry/.

[9] IBM Cloud Container Registry. https://www.ibm.
com/cloud/container-registry.

[10] Jfrog Artifactory. https://jfrog.com/
artifactory/.

[11] Overlay Filesystem. https://www.kernel.org/doc/
Documentation/filesystems/overlayfs.txt.

[12] Quay. https://quay.io/.

[13] Ali Anwar, Mohamed Mohamed, Vasily Tarasov,
Michael Littley, Lukas Rupprecht, Yue Cheng, Nannan
Zhao, Dimitrios Skourtis, Amit S. Warke, Heiko Ludwig,
Dean Hildebrand, and Ali R. Butt. Improving Docker
Registry Design Based on Production Workload Analy-
sis. In Proceedings of the 16th USENIX Conference on
File and Storage Technologies (FAST), 2018.

[14] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi,
R. Pandurangan, and V. Balakrishnan. Understanding
Performance of I/O Intensive Containerized Applica-
tions for NVMe SSDs. In Proceedings of the 35th IEEE
International Performance Computing and Communica-
tions Conference (IPCCC), 2016.

[15] Christian Bliek, Pierre Bonami, and Andrea Lodi. Solv-
ing Mixed-integer Quadratic Programming Problems
with IBM-CPLEX: A Progress Report. In Proceedings
of the 26th RAMP Symposium, 2014.

[16] Eric A. Brewer. Kubernetes and the Path to Cloud
Native. In Proceedings of the 6th ACM Symposium on
Cloud Computing (SoCC), 2015.

[17] Lian Du, Tianyu Wo, Renyu Yang, and Chunming Hu.
Cider: A Rapid Docker Container Deployment System
through Sharing Network Storage. In Proceedings of
the 19th IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC), 2017.

[18] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ot-
tean, Jin Li, and Sudipta Sengupta. Primary Data
Deduplication–Large Scale Study and System Design.
In Proceedings of the 2012 USENIX Annual Technical
Conference (ATC), 2012.

[19] Eric Foster-Johnson. Red Hat RPM Guide. 2003.

[20] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tris-
tan Gally, Gerald Gamrath, Robert Lion Gottwald, Gre-
gor Hendel, Christopher Hojny, Thorsten Koch, Marco E.
Lübbecke, Stephen J. Maher, Matthias Miltenberger,
Benjamin Müller, Marc E. Pfetsch, Christian Puchert,
Daniel Rehfeldt, Franziska Schlösser, Christoph Schu-
bert, Felipe Serrano, Yuji Shinano, Jan Merlin Vier-
nickel, Matthias Walter, Fabian Wegscheider, Jonas T.
Witt, and Jakob Witzig. The SCIP Optimization Suite
6.0. Technical Report, Optimization Online, 2018.

[21] N Hardi, J Blomer, G Ganis, and R Popescu. Making
Containers Lazy with Docker and CernVM-FS. Journal
of Physics: Conference Series, 1085(3), 2018.

[22] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Slacker: Fast Distribution with Lazy Docker Containers.
In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[23] Wang Kangjin, Yang Yong, Li Ying, Luo Hanmei, and
Ma Lin. FID: A Faster Image Distribution System for
Docker Platform. In Proceedings of the 2nd IEEE Inter-
national Workshops on Foundations and Applications
of Self* Systems (FAS* W), 2017.

[24] Mark Lamourine. Storage Options for Software Con-
tainers. ;login: The USENIX Magazine, 40(1), 2015.

[25] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo,
Jerome Vouillon, Berke Durak, Xavier Leroy, and Ralf
Treinen. Managing the Complexity of Large Free and
Open Source Package-based Software Distributions.
In Proceedings of the 21st IEEE/ACM International

Conference on Automated Software Engineering (ASE),
2006.

[26] Paul Menage. Adding Generic Process Containers to
the Linux Kernel. In Linux Symposium, 2007.

[27] Dutch T Meyer and William J Bolosky. A Study of
Practical Deduplication. ACM Transactions on Storage
(TOS), 7(4), 2012.

[28] Senthil Nathan, Rahul Ghosh, Tridib Mukherjee, and
Krishnaprasad Narayanan. CoMICon: A Co-Operative
Management System for Docker Container Images. In
Proceedings of the 5th IEEE International Conference
on Cloud Engineering (IC2E), 2017.

[29] João Paulo and José Pereira. A Survey and Classification
of Storage Deduplication Systems. ACM Computing
Surveys (CSUR), 47(1), 2014.

[30] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski,
Andy Bavier, and Larry Peterson. Container-based
Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors. In Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems (EuroSys), 2007.

[31] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Wenji Li, Raju Rangaswami, and Ming Zhao. Evaluat-
ing Docker Storage Performance: From Workloads to
Graph Drivers. Cluster Computing, Online First, 2019.

[32] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Amit Warke, Dean Hildebrand, Mohamed Mohamed,
Nagapramod Mandagere, Wenji Li, Raju Rangaswami,
and Ming Zhao. In Search of the Ideal Storage Configu-
ration for Docker Containers. In Proceedings of the 1st
Workshop on Autonomic Management of Large Scale
Container-based System (AMLCS), 2017.

[33] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and
Baris Kasikci. Cntr: Lightweight OS Containers. In
Proceedings of the 2018 USENIX Annual Technical Con-
ference (ATC), 2018.

[34] Xingbo Wu, Wenguang Wang, and Song Jiang. Total-
COW: Unleash the Power of Copy-on-Write for Thin-
Provisioned Containers. In Proceedings of the 6th Asia-
Pacific Workshop on Systems (APsys), 2015.

[35] Qiumin Xu, Manu Awasthi, K Malladi, Janki Bhimani,
Jingpei Yang, and Murali Annavaram. Performance
Analysis of Containerized Applications on Local and Re-
mote Storage. In Proceedings of the 33rd International
Conference on Massive Storage Systems and Technology
(MSST), 2017.

[36] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas
Thain, Mohamed Mohamed, Dimitrios Skourtis, Amit S
Warke, and Dean Hildebrand. Wharf: Sharing Docker
Images in a Distributed File System. In Proceedings of

the 9th ACM Symposium on Cloud Computing (SoCC),
2018.

