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Abstract

Cloud providers and their tenants have a mutual interest in
identifying optimal configurations in which to run tenant jobs,
i.e., ones that achieve tenants’ performance goals at minimum
cost; or ones that maximize performance within a specified
budget. However, different tenants may have different perfor-
mance goals that are opaque to the provider. A consequence
of this opacity is that providers today typically offer fixed
bundles of cloud resources, which tenants must themselves
explore and choose from. This is burdensome for tenants and
can lead to choices that are sub-optimal for both parties.

We thus explore a simple, minimal interface, which lets
tenants communicate their happiness with cloud infrastructure
to the provider, and enables the provider to explore resource
configurations that maximize this happiness. Our early results
indicate that this interface could strike a good balance between
enabling efficient discovery of application resource needs and
the complexity of communicating a full description of tenant
utility from different configurations to the provider.

1 Introduction
Ideally, cloud providers would provision for each tenant

exactly the cloud resources that strike the tenant’s desired cost-
performance targets. This would fulfill both the tenants’ and
the providers’ goals: each tenant pays for exactly what they
get, and the provider uses their infrastructure at its maximum
efficiency, without uncertainty in how to provision resources
for tenants. However, there is no effective mechanism today
for tenants to understand and convey their precise needs to
the providers.

Cloud data centers allow tenants to run applications in a
variety of configurations, using cloud virtual machines or in-
stances that differ in available memory, CPU cores and clock
speeds, and storage and networking options. They also ex-
pose several higher-level services such as relational and non-
relational databases, and machine learning and stream pro-
cessing engines, which often accommodate their own tenant-
specific configurations. A tenant’s choice of configuration
can have a large impact on their cost and the performance
achieved for their workload.

Finding appropriate configurations that achieve the desired
cost and performance targets is a non-trivial exercise, and in
the face of a large number of available configuration options,
burdensome for cloud tenants. Even just launching a virtual
machine in today’s public cloud platforms requires choosing
from among tens of possible VM configurations [1, 3, 4].

This is a well-studied problem, and there is already sub-
stantial work on identifying suitable configurations out of a
given set, e.g., identifying out of the tens of bundled virtual
machine types on offer, the right one to use for a particular
workload [5, 13, 15, 17]. However, these efforts still place the
burden of exploring configurations on tenants. Additionally,
the configuration chosen by the user might not be optimal
from the cloud’s standpoint, e.g., a particular machine type
may be in high demand, while others with similar performance
for many of those workloads remain idle.

Leaving the exploration of appropriate configurations to
tenants (regardless of whether from a sparse space of bun-
dled configurations, or a more continuous spectrum) has three
disadvantages: (a) decreased usability and a higher barrier
to entry for new tenants; (b) tenants would incur additional
expenses for such exploration, which the provider could avoid
or reduce by conducting the exploration at times of low uti-
lization; and (c) with dynamic pricing, the desirable configu-
ration changes with time, requiring continuous vigilance and
effort by the tenant. Thus, an approach where the provider
can auto-configure tenants’ execution environments would
be invaluable in improving usability and efficiency. A key
roadblock to the provider themselves searching for optimal
configurations is the lack of information: they do not have
any visibility into a tenant application’s performance goals,
so how should they optimize for the tenant?

There is a range of possibilities to bridge this tenant-
provider divide, defined by the amount of information ex-
changed between the two. A significant body of past work
has explored the extremes: (a) the tenant provides zero infor-
mation, such that any optimization run by the cloud provider
is based on monitoring metrics like CPU or memory utiliza-
tion [11, 12, 15]. However, such metrics may not have a sim-
ple, clear relationship to application-level objectives; and (b)
the tenant describes in detail their application’s utility across



fine-grained collections of available resources [8, 16]. These
extremes illustrate the tradeoff: the former limits optimiza-
tion, and hence efficiency, at the expense of a simpler interface
and usability, while the latter admits precise optimization, but
requires substantial effort from the tenant, together with a
complex tenant-provider interface capturing general utility
functions across potentially many types of resources.

The clear deficiencies of the above two extreme variants
of the tenant-provider interface motivate the central question
of this work: does an appropriate interface exists which bal-
ances the goals of efficiency and usability? Our early results
on exploring various design options for this interface reveal
that a simple-to-use interface could potentially also achieve
high efficiency. This interface consists of the tenant reporting
to the provider their happiness index, a real value ∈ [0,1]
representing the tenant’s satisfaction with the current perfor-
mance. For simple scenarios, which may themselves cover
several use cases, we show, somewhat surprisingly, that this
minimal interface suffices for the provider to rapidly discover
cheap and efficient configurations.

Our proposed tenant-provider interface, based on the hap-
piness index, offers both simplicity and efficiency and could
lead to a substantial change in how cloud services work. How-
ever, more complex scenarios pose several challenges to our
approach, including the expansion of the search space of con-
figurations. We thus also elucidate such issues, and potential
approaches for addressing them, in the hope that this work
ignites a broader debate about what the right interface is, and
the tradeoffs involved therein.

2 A Happy Cloud
We explore a simple interface between the cloud provider

and tenant, whereby the tenant communicates to the provider
a single, real-valued evaluation of their satisfaction from the
current configuration, and the provider uses the evaluation
to adjust the resource configuration, hopefully converging
towards high-efficiency configurations. We first provide a
simplified description, leaving several practical issues to §6.

2.1 What does the tenant provide?
The tenant must translate the metrics they care about, such

as Web server response time, rate of tuples processed in a
stream processor, job completion time, etc. to the happiness
index, a real value∈ [0,1], with 1 being the maximum possible
satisfaction with the service. Note that the tenant’s calculation
can combine arbitrary metrics (averages, percentiles, etc.) and
be arbitrarily complex, but is opaque to the provider, who
only sees the happiness index. This is key to eliminating the
need for the provider to understand in detail the metrics and
structure of the tenant’s application.

It must also be clear what resources the reported happiness
applies to, i.e., the “happiness domain”. This could be any
combination of virtual machines, lambda functions, or cloud-
offered services. By default, it is assumed that all services

used by the tenant are part of this happiness domain, and no
additional input is required. However, if the tenant is running
multiple independent high-level applications, these must be
identified as separate happiness domains, with their happiness
index values reported separately.
Implementation: Should the provider query the tenant for
their happiness? This could simplify optimization at the cloud
provider, e.g., the optimizer could decide when new data is
useful, and adjust the rate of these queries depending on con-
vergence rate and the behavior of the application. However,
this limits flexibility for tenants: they must make happiness
values available on demand, potentially restricting their op-
tions for implementing their calculation. Additionally, for
some applications, it may only be possible to provide metrics
after completion. Thus, we suggest that tenants post happiness
values as they compute them to an agreed-upon location, e.g.,
an HTTPS URL.

2.2 What does the provider do?
The provider receives the happiness index values the ten-

ant reports and uses them to decide whether or not to test
new resource configurations, and if so, which ones. To accom-
modate tenant expense budgets and a notion of service-level
agreement, the provider can accept from a tenant either of
cost or happiness thresholds as a constraint, and optimize for
the other, i.e., maximize the tenant’s happiness within a fixed
budget, or minimize their cost while guaranteeing at least a
certain target happiness. The provider’s objective is to use
reported happiness values to optimize the configuration.
Optimization dimensions: Every happiness domain has a set
of parameters that can be optimized, including hardware pa-
rameters like bandwidth, memory, the number of CPU cores,
the type of storage; and software parameters for cloud ser-
vices that the tenant uses, such as cloud-managed databases.
Beyond these configuration options that tenants manually
configure today (at a coarse granularity), providers may also
explore parameters that likely cannot be exposed to tenants,
such as packet priorities. The parameters explored may de-
pend on the happiness domain: the parameters for a domain
containing only a single virtual machine may be very different
from that for a complex service with different components
running on several virtual machines.
Implementation: The provider must use a sparse sampling
of the utility of a small number of configurations to search
for near-optimal configurations. This implies black-box opti-
mization, in the absence of a “gradient” that could be used in
methods like stochastic gradient descent. Further, the samples
of utility in the form of happiness index can be noisy, as even
for simple applications, there can be substantial variation in
performance and application load over time.

While our interface could be implemented using a variety
of methods, such problems are often amenable to Bayesian
optimization [9, 14], which allows gradient-free optimization
by modeling the objective as a Gaussian process. Based on



available samples of the objective function, it estimates the
potential improvement in the objective value from every pos-
sible set of inputs, allowing an efficient search of the input
space. While this type of optimization has been used in other
systems (such as those for helping tenants explore configu-
rations [5]), it can violate tenant-specified bounds on cost or
happiness during its search procedure.

To guarantee adherence to tenant cost or happiness con-
straints, we use a safe variant of Bayesian optimization [6, 7],
whereby the parameter exploration is performed in such a way
that it never violates a specified constraint. This method has
been applied to improve the controllers of physical systems
like robots and quadrotors. The safety criteria slow down
convergence but admit SLA enforcement.
Caveat: Any safe optimization approach requires a safe start-
ing point, i.e., the tenant must provide an initial configuration
that meets their specified bound on cost or happiness. In the
absence of a safe starting point, no safe exploration is possible.
However, we believe this is not a difficult requirement to fulfill
in practice: tenants typically overprovision to meet their per-
formance targets [10], and such configurations would provide
a good starting point for optimization towards cheaper con-
figurations. Relatedly, this approach can only search through
a convex space of configurations which includes the starting
safe configuration.

3 Preliminary results
As a proof-of-concept for our approach, we test a sim-

ple happiness domain containing one virtual machine and a
database service and optimize three types of resources:

• Available network bandwidth: using Linux tc, we vary
the bandwidth between 10 Mbps and 1 Gbps.
• CPU cycles: we vary maximum CPU utilization between

20% and 100%.
• Database: we use Azure CosmosDB, varying the maxi-

mum request units from 400 to 5000.

We describe resource utilization in terms of percentage of
the available range, e.g., using 2300 DB request units trans-
lates to a 2300

5000−400 = 0.5 usage of DB resources. The cost of
an individual resource is also simply its fractional utilization
(0.5 in this case); with the cost of a set of resources being
the average of different resource utilization. These choices
are largely arbitrary, and in our experience, do not affect our
results substantially.

To explore scenarios that use different combinations of
resources, we set up a Web server that can respond to 3 dis-
tinct types of queries, with each query type stressing one
of the above 3 resources. Bandwidth-focused queries fetch
static Web pages from the server, uniformly distributed in the
1-5 MB range; CPU-focused queries force the server to cal-
culate the first N prime numbers for N ∈ [80k,120k]; and the
database-focused queries result in the server adding, updating,
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Figure 1: The optimization process for the bandwidth-focused ex-
periment. The optimizer only explores one dimension, i.e., bandwidth.
Top: we minimize cost such that happiness ≥ 0.5. We test 8 configu-
rations (red) before convergence. The black (thick) line shows the
optimizer’s estimated happiness, and the shaded region its confi-
dence. For under-explored regions, confidence is lower (i.e., a larger
shaded region). Bottom: We can also incorporate a penalty for cost
into the happiness function itself, and just maximize this function.
This leads to a configuration similar to the top case also in 8 itera-
tions.

or reading objects in the cloud-managed DB service. We run
the server on an Azure D4s v3 instance, with 4 vCPU cores
and 16 GB of RAM. By running a client (on a separate in-
stance of the same kind) that makes different types of queries
to this Web server in different proportions, we can produce
arbitrary workloads for the server.

We use a simple happiness function: the server monitors
completion time for each request and reports the fraction
of requests fulfilled in less than 2 seconds as the happiness
index. For instance, if the server makes 300 requests since it
last reported its happiness index, and 100 finish in under 2
seconds, the happiness index is 0.33.

Every time the server reports a new happiness value, our
optimizer (emulating a cloud provider) runs its safe Bayesian
optimization and identifies a new configuration to examine.
The optimization goal we use is minimizing cost while keep-
ing the happiness above 0.5. The tenant’s default, overprovi-
sioned configuration requests 80% of each resource. (This is
a safe configuration, as it indeed results in happiness over 0.5
for each of our test workloads.)
A bandwidth-focused experiment: We configure the client
to issue only bandwidth-focused queries. We allow the opti-
mizer only to explore bandwidth provisioning, keeping DB
and CPU fixed. Fig. 1 shows that the scheduler converges in
8 iterations without violating the SLA (i.e., happiness ≥ 0.5).
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Figure 2: The optimizer explores 3 different resources: network bandwidth, number of database request units, and maximum CPU utilization
across two workloads: (a) a mixed workload, which uses all resources in a relatively balanced fashion; and (b) a bandwidth-focused workload.
Each line represents one resource configuration. For the mixed workload, after 10 iterations, the optimizer converges correctly without violating
the minimum happiness of 0.5. However, for the bandwidth-focused workload, the optimizer takes about 30 steps to converge.
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Figure 3: The reported happiness can show substantial variation.
Here we show the happiness reported across 100 measurements of
the bandwidth-intensive workload and 50% available bandwidth.
Note that each happiness value is computed over 300 client requests,
and this does not eliminate the variation in this example.

Each iteration consists of receiving one happiness index value
and proposing a new configuration to evaluate.

happiness = f(performance, cost): Should we incorporate
the cost directly into the happiness calculation? This is plausi-
ble, and the Bayesian optimizer still works. To illustrate that,
we rerun the same bandwidth-oriented scenario as above, but
this time with a modified happiness function that includes the
cost (Fig.1). The new happiness function reports happiness as
the inverse of the cost if at least 50% of all requests finish un-
der 2 seconds. If not, happiness is 0. While we reach a similar
bandwidth allocation, the search does not always satisfy the
safety constraint that 50% of requests must perform above a
certain threshold, because the function is not smooth.

Multi-dimensional optimization: We next test the same
workload, but allow the optimizer to configure all 3 resources.
As shown in Fig. 2(b), the optimizer again converges to the
same provisioning for bandwidth as earlier (and lower provi-
sioning for DB and CPU, which is desirable). However, the
larger search space requires 30 iterations.

This simple setup also allows us to explore the impact of

noise in the happiness values on the safe Bayesian optimizer.
Fig. 3 shows that even for this simple setup, with a fixed rate
of bandwidth-focused requests from the client, there is siz-
able variation in the reported happiness values. Nevertheless,
the safe Bayesian optimizer converges without violating the
target happiness constraint. We discuss the potential impact
of greater workload instability in §6.
A more balanced workload: We also tested a more mixed
workload comprised of an equal proportion of bandwidth,
CPU and database requests. In this case, shown in Fig. 2(a),
we observe that the optimizer discovers that the CPU and DB
are more important than in the previous case. Convergence
for this workload is faster, taking 10 iterations, likely due to
the more similar impact of different resources.

4 Serverless and happy
Our exploration thus far has focused on traditional, long-

lived tenant workloads, in a setting with virtual machines.
However, the trend of serverless computing could potentially
make an approach like ours even more attractive.

Serverless computing has unique properties suitable for our
suggested approach. First, serverless functions are short-lived.
Every sub-optimal choice thus lasts at most a few minutes1.
For instance, consider a workload that incurs only 10% CPU
utilization, but our optimization algorithm assigns one whole
CPU core. If the workload lasts for one second, at current
serverless prices, it would take more than 430 executions to
incur an additional expense of 0.01$ due to this exploratory
configuration. Second, the frequent feedback from short-lived
functions implies a large number of optimization iterations
with a low cost for exploration. Third, even the small burden
of explicit feedback in terms of a happiness index may not be
necessary for serverless functions. Cloud providers know the
execution time of every function, which is, in many cases, a
good proxy for performance and customer happiness.

1This depends on the cloud provider, but currently, 5 minutes is the
maximum execution time for serverless functions across all major providers.
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Figure 4: Execution of one serverless function that performs image
recognition using a TensorFlow model. As the resource allocation
increases, the execution time improves, but the cost increases at the
same time. To find an optimal configuration, the execution time is
not enough – users must provide additional information about their
budget.

However, to run black-box optimization, we must know
the cost constraints. Figure 4 shows the execution time and
cost of a simple serverless function that loads one image and
uses the image for object recognition using a model written
in Tensorflow. As we increase available resources, the ex-
ecution time decreases, but the cost increases. To find the
optimal configuration, we must bound the cost, after which
the optimization is simple.

Optimization of a single serverless function does not rep-
resent a serious challenge especially in the situation where
we have information about the cost constraints. However,
users do not always care about the performance of individual
functions. Instead, a function represents a task in a larger
job. In these cases, the execution time of one function might
not be directly correlated to the execution time of the whole
job. This problem can be mitigated in two ways. First, users
can report their happiness as job execution time, or any other
metric they want to optimize for. Second, the dependency
between tasks can be automatically learned or collected from
external services, e.g., AWS Step Functions [2] that orches-
trate the execution of multiple functions. From the obtained
dependencies, we can directly infer the job execution time.

To illustrate the optimization process for a serverless job,
we execute a simple video processing workload. For a given
video file uploaded on the cloud storage (S3), we execute two
lambda functions in parallel. The first function loads the file,
changes the saturation of the video, which is a CPU intensive
process, and stores the file back into storage. The other func-
tion more lightweight. It loads the video file, extracts basic
video metadata, and stores it in a database.

Our goal is to minimize the cost of this simple video pro-
cessing pipeline while keeping the job execution time below
20 seconds. The results are shown in Fig 5 2. We start by allo-
cating one full core to each job3. In order to reduce the total

2Allocation 1.0 corresponds to 1536 MB on AWL Lambda. Allocation
0.0 means the minimum allocation of 128 MB

31536 MB of memory on AWS Lambda corresponds to one full CPU
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Figure 5: Optimization of a video processing job that executes two
serverless functions in parallel – one function extracts metadata
from a video and the other applies color transformation on the video.
Since the metadata function requires significantly less resources, the
optimization algorithm has detected that successfully and decreased
the resource allocation for the metadata function in order to decrease
the cost.

cost, the Bayesian optimization allocates less resources over
time to the lightweight metadata function, because its com-
pletion time does not influence the job completion, but can
reduce the cost. The optimization converges in 20 iterations,
after which the cost per execution is reduced by 15%.

Thus, our approach is potentially easily deployable and can
yield immediate benefits in the serverless setting.

5 Conclusion
We explore a novel interface between cloud providers and

their tenants that helps identify the best configurations for
tenant applications. Our proposal, the happiness index, strives
for simplicity, making it easy to use for tenants and providers;
as well as efficiency, allowing the quick discovery of superior
configurations.

While our results only scratch the surface of this problem,
they indicate promise. For some scenarios, optimization based
on the happiness index would be fast enough to be usable
right away. Even a few hundred iterations could finish rapidly
for applications like Web services, especially relative to the
lifetime of applications in the cloud environment. Further,
several inherent features of a serverless computing context
could make our approach attractive there.

For more complex scenarios, particularly as the dimension-
ality of the search space grows, convergence to a suitable
configuration could require more iterations. We next discuss
this challenge among others.
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6 Discussion Topics
Defining the happiness function: Cloud tenants could use
any metrics their business depends on, e.g., page load times
for Web services, in framing happiness. Nevertheless, it could
incur substantial effort to develop a happiness function over
the many attributes the service’s operators would otherwise
manually look at. Clearly, poor design of the function could
lead to arbitrarily bad results.
Scalability and convergence time: The search space for con-
figurations increases with the complexity of tenant applica-
tions. If the tenant’s happiness domain includes 100 compo-
nents, then naively searching across even just 3 resources for
each component entails a search space with 300 dimensions.
However, for applications with large numbers of identical
components (e.g., a replicated Web service), the search space
can be reduced to just the number of resources to explore.
This intuition offers a simple default for the provider to ex-
plore, but can be used in more complex cases with a small
amount of additional information from the tenant – explicit
tagging of identical components (such as in AWS’s “Auto
Scaling Groups”). Nevertheless, the question of how many
dimensions can be explored efficiently is, as of now, open.
Workload stability: As discussed in §3, the safe Bayesian
optimizer can tolerate some noise, but we have not explored
yet how much variation can be managed. There are two possi-
bilities for addressing large variations. First, the tenant could
ensure that they report happiness over periods long enough
to encompass such variation. Second, such variations can be
addressed via horizontal scaling (allocating more identical
instances) or / and vertical scaling (increasing resource alloca-
tion for existing instances). It is possible that mechanisms like
Amazon’s Auto Scaling can be controlled by the optimizer
in response to changes in happiness, but including this in our
framework will require more work, particularly, addressing
the sensitivity to variations – when is it appropriate to trigger
horizontal or vertical scaling?
Tenant responsibility: Tenants must provide a safe start con-
figuration, which meets their performance (or cost) target, as
noted in §2. Only then can the provider search for config-
urations that optimize for minimizing cost (or maximizing
performance). However, recent work indicates that most ten-
ants today overprovision to meet performance goals [10],
indicating that safe configurations would usually be available.

One caveat of our approach is that certain tenant applica-
tions may not benefit from dynamically increasing resource al-
locations. For example, an application that decides (at launch)
how many threads to use based on the number of CPU cores
available, will not benefit from the optimizer allocating more
or fewer cores in its optimization process. We do not see an
easy way to address this problem, and it may require addi-
tional logic in tenant applications of this kind, such that they
can reevaluate hardware-based application logic periodically.
The provider’s cost: We have so far used a very simplistic

view of the cost of resources, assuming fine-grained linear
behavior. While disaggregation in data centers could move us
closer to this, at least for today’s public cloud providers, we
can expect that there could be a substantial cost to resource
stranding from imbalanced use of resources. Obviously, the
cost function the provider uses must account for such factors.
However, in this regard, we note that some providers already
offer dynamic pricing, and are moving towards a finer-grained
implementation of the “pay for what you use” mantra, for
example with “serverless” computing.
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