
Detecting and Evading Censorship-in-Depth:
A Case Study of Iran’s Protocol Filter

Kevin Bock Yair Fax Kyle Reese Jasraj Singh Dave Levin
University of Maryland

Abstract
As the censorship arms race advances, some nation-states

are deploying “censorship-in depth,” composing multiple or-
thogonal censorship mechanisms. This can make it more dif-
ficult to both measure and evade censorship. Earlier this year,
Iran deployed their protocol filter that permits only a small set
of protocols (DNS, HTTP, and HTTPS) and censors connec-
tions using any other protocol. Iran composes their protocol
filter with their standard censorship, threatening the success
of existing evasion tools and measurement efforts.

In this paper, we present the first detailed analysis of Iran’s
protocol filter: how it works, its limitations, and how it can
be defeated. We reverse engineer the fingerprints used by
the protocol filter, enabling tool developers to bypass the
filter, and report on multiple packet-manipulation strategies
that defeat the filter. Despite acting concurrently with and on
the same traffic as Iran’s standard DPI-based censorship, we
demonstrate that it is possible to engage with (and defeat)
each censorship system in isolation. Our code is publicly
available at https://geneva.cs.umd.edu.

1 Introduction

Censoring nation-states employ defense-in-depth, layering
multiple orthogonal censorship mechanisms to make it more
difficult to communicate with certain destinations or via cer-
tain protocols. Typically, such “censorship-in-depth” involves
wholly different systems, such as combining lemon DNS re-
sponses [2,14], IP blocking [5,18], and TLS SNI blocking [4].
As a result, each form of censorship targets different packets,
and can often be studied and defeated in isolation.

Far less common are censorship mechanisms that directly
compose with one another, and target the same packets. In
such situations, it is more difficult to study censorship because
the two mechanisms’ side effects can be conflated, and it is
more difficult to evade censorship because one must evade
both mechanisms simultaneously.

In early 2020, Iran launched such a form of censorship-in-
depth by deploying their protocol filter. A protocol filter only
allows a small list of protocols to be used, and censors proto-
cols it forbids. A similar system in Iran was first reported on

by Aryan et al. [3] in 2013, but to the best of our knowledge
was not used for years until it was turned back on this year.
We are also unfamiliar with any work detailing how Iran’s
protocol filter works or how to evade it—underscoring the dif-
ficulties inherent in measuring and circumventing censorship-
in-depth.

In this paper, we present a detailed analysis of Iran’s pro-
tocol filter: how it works, its limitations, and how it can be
defeated. Even though the protocol filter operates concur-
rently with and on the same traffic as Iran’s standard deep
packet inspection (DPI)-based censorship, we demonstrate
that it is possible to engage with each censoring mechanism
in isolation. That is, we show how to evade the filter only, the
regular censorship system only, and both in tandem. We used
Geneva [4, 5], a genetic algorithm that automatically trains
against censoring regimes in a black-box fashion to learn how
to evade them. We report on the three evasion techniques
Geneva discovered, as well as the results from our follow-
on experiments that expose what the filter targets and what
protocol fingerprints it uses.

The rest of the paper is organized as follows. §2 reviews
prior work in measuring Iranian censorship. §3 describes our
methodology and vantage points we use for our experiments.
§4 presents our analysis of the protocol filter. §5 discusses
how the protocol filter can be evaded. Finally, §6 concludes.

2 Prior Work

Iranian censorship has been studied in broader efforts to mea-
sure global censorship [6, 10–13, 15]. There have been fewer
studies specific to how Iran’s censorship operates. Notably,
Anderson proposed a technique for detecting censorship via
throttling in Iran [1].

The most closely related study to ours was a 2013 study by
Aryan et al. [3]. They observed throttling between two vantage
points that affected SSH, custom obfuscated SSH, and custom
obfuscated HTTP. Since HTTP and HTTPS were unaffected,
the authors hypothesized that Iran had deployed a protocol
filter and were throttling connections that did not match HTTP
and HTTPS. This behavior disappeared shortly after Iran’s
June 2013 election, and to the best of our knowledge, there
have been no further reports on protocol filtering.

https://geneva.cs.umd.edu


The censorship system observed by Aryan et al. in 2013
differs significantly from what we observe in 2020. First, the
censorship mechanism is different; the prior system throttled
forbidden protocols, but we observe outright dropping of all
packets for some period of time. Second, the affected ports
appear to be different; Aryan et al. observed filtering of SSH
but not HTTP, but we find this no longer to be true (we find
more nuanced behavior, and test a wider set of protocols). We
are the first to delve deeply into how the protocol filter works
and how to evade it, and thus cannot compare our results
directly.

3 Methodology

We performed our experiments from 6 vantage points geo-
graphically dispersed within Iran: Fars, Isfahan, Khorasan,
Razavi, Tehran, and Zanjan. These contain a mix of both
residential and business networks.

In our experiments to measure the protocol filter (§4), we
performed active measurements from these vantage points
to servers we controlled outside of Iran, in Amazon EC2,
Microsoft Azure, and DigitalOcean (located geographically
in Japan, Ireland, the United States, Australia, and India). We
find no significant difference in the behavior of the protocol
filter across any of our vantage points or external servers, nor
did we observe any change in the behavior of the filter during
the course of our experiments to the time of writing.

To develop new evasion strategies (§5), we used Geneva [4,
5], an open-source genetic algorithm that trains directly
against live censors and automatically discovers censorship
evasion strategies. Geneva operates over an input packet
stream that triggers censorship (such as an HTTP GET request
with a censored keyword), composes multiple packet manipu-
lations (such as duplicating packets, fragmenting them, and
tampering with them), and mutates them over a series of “gen-
erations” until it discovers ways to evade censorship. Geneva
need only run at one side of a connection, either the client [5]
or the server [4]. We employ both in this study, and show that
Iran’s protocol filter can be evaded from either side.

4 Protocol Filter

In this section, we explore how Iran’s protocol filter operates
and whom it affects, and we detail precisely what properties
it looks for when filtering DNS, HTTP, and HTTPS traffic.

4.1 How Iran’s Protocol Filter Works
We performed active measurements to answer the following
questions about the mechanics of the protocol filter:

How does the protocol filter censor forbidden protocols?
Once a connection is observed to be communicating with a
disallowed protocol, the protocol filter censors the connection.

Protocol
Filter

Client

Standard
Censorship

Internet

Blackhole

Permitted

Not permitted

Figure 1: Iran’s layered censorship system, employing de-
fense in depth. Note that the order of censorship systems is
unknown; this is simply a graphical depiction.

The filter censors connections by dropping all packets from
the client in the flow1. The protocol filter can be triggered
manually by sending any data stream on a monitored port that
does not resemble a permitted protocol. Packets within the
censored flow from the server are unaffected: the client still
receives all of the packets sent by the server even after the
protocol filter has been tripped. However, because the client
cannot acknowledge or respond to any data, the connection is
effectively censored.

Which ports and protocols does the filter monitor? From
our vantage points, we made connections to servers we con-
trolled outside of Iran and repeatedly sent messages contain-
ing just the string “test” (a payload that is not compliant
with any of the protocols we tested) between sleeps for ev-
ery possible destination port value (0-65535). Connections
that time out identify which ports are likely affected by the
filter. We repeated this experiment three times to validate our
results.

We find that Iran’s protocol filter affects only TCP traf-
fic, and only on ports 53 (commonly DNS), 80 (commonly
HTTP), and 443 (commonly HTTPS). Traffic sent on any
other port is not filtered (and is therefore also not subject to
Iran’s standard censorship, which only operates over these
same ports).

We then sent well-formatted messages of a variety of pro-
tocols (DNS, HTTP, HTTPS, SMTP, and SSH) on these ports.
Of these, we find that the filter permits only DNS, HTTP, and
HTTPS traffic. However, none of these are bound to their
standard ports: the filter matches all three protocols on any of
the three ports.

How many packets does the filter monitor? To answer
this question, we sent multiple packets with non-protocol
data (e.g., “test”) before well-formatted allowed protocol

1We define “flow” to refer to the unique four-tuple of source and destina-
tion IP addresses and ports.



#IPs Provider
1,453 Amazon Technologies Inc.

565 Cloudflare, Inc.
229 Akamai Technologies, Inc.
171 Amazon.com, Inc.
167 Fastly
146 DigitalOcean, LLC

97 Amazon Data Services Limited
92 RIPE Network Coordination Centre
64 Linode
60 Amazon Data Services

Table 1: Top 10 providers for affected IP addresses.

data. We determined that the filter monitors the first two data-
carrying packets from the client at the start of a connection.
If either of those two packets matches a protocol fingerprint,
the flow is unharmed; if no packet does, the second packet
and rest of the flow are dropped.

How long does the filter censor an offending flow? To
test this, we intentionally tripped the protocol filter, waited an
interval of time, and then sent non-data-carrying packets in
the censored flow. Recall that once we trigger the filter, these
packets will be dropped if the filter is still censoring our flow.
We repeat this experiment with time intervals from 1 second
to 90 seconds, each time using different source ports to avoid
experiments conflicting with one another.

We find that, once tripped, the filter will continue to drop
the offending flow’s network traffic for 60 seconds, but each
time an additional packet is sent in a flow, the 60 second
timer resets. This means that, in practice, because TCP will
retransmit packets that are not acknowledged, an offending
flow will be affected by the filter for much longer than 60
seconds.

Is the protocol filter bidirectional? “Bidirectional” censor-
ship systems do not differentiate between the client being the
host inside or outside the nation-state. Iran’s standard censor-
ship system operates bidirectionally; it can be triggered by
making requests from outside the country to servers inside the
country (or vice versa). As a result, bidirectional censorship
is often easier for researchers to study.

However, we find that the filter is not bidirectional: it only
affects connections where the client is inside Iran. The server
also receives almost no indication censorship has taken place.
Recall that packets from the server are unaffected: unlike
with the Great Firewall of China, which sends RSTs in both
directions [16], Iran’s protocol filter only affects the packets
sent by the client. This makes it difficult to identify and study
the protocol filter without vantage points within Iran.

Can the protocol filter reassemble TCP segments? We re-
peatedly made valid but segmented DNS, HTTP, and HTTPS

#IPs Provider
4,541 Cloudflare, Inc.
1,465 Unknown

657 Google, LLC
657 Alisoft
580 Amazon Technologies, Inc.
544 Asia Pacific NIC
537 RIPE Network Coordination Centre
287 Alibaba.com LLC
277 Amazon.com, Inc.
253 Akamai Technologies, Inc.

Table 2: Top 10 providers for unaffected IP addresses

requests on filtered ports2. We find that segmenting our re-
quests too many times incurs censorship from the protocol
filter, indicating that, like Iran’s regular censorship infras-
tructure [3–5], the filter is incapable of reassembling TCP
segments. We also note that the filter also does not check the
checksums of the packets it processes.

4.2 Whom the Filter Is Applied To
During our experiments, we noticed that the protocol filter is
not applied to all server IP addresses. We find that whether or
not an IP address is filtered is consistent between our vantage
points; we could not identify any destination IP addresses
for which the protocol filter was active from one vantage but
inactive from another.

To identify which IP addresses are affected by the filter, we
tested the effects of the filter on the Alexa top-20,000 most
popular websites. To avoid the effects of DNS censorship or
requesting IP addresses inside of Iran (as the requests would
not cross the filter), we used dig outside of Iran to get IP
addresses for all 20,000.

Inside of Iran, we set up an experiment with two conditions.
Our experiment The first condition was a control: we made
normal GET requests to all 20,000 IP addresses and recorded
the success or failure of each request. The second condition
tested for the filter: we requested all 20,000 IP addresses again,
this time sending “G”, “ET”, and “/” in separate messages3.
IP addresses that respond in the first condition but time out in
the second condition are likely affected by the protocol filter.
We perform this experiment ten times to validate the results.

Over all ten experiments, 3,595 IP addresses (17.9%)
tripped the filter at least eight times. Of those, 3,499 were
affected all ten times (17.4%), and 278 (1.4%) IP addresses
were affected 3–7 times. Tables 1 and 2 show the number of
IP addresses per provider that were affected and unaffected
by the protocol filter, respectively. Overall, we find that IP

2We disabled Nagle’s algorithm for this experiment to avoid spurious
segment reassembly interfering with our results.

3We performed this experiment over raw sockets, with Nagle’s algorithm
again disabled.



address provider is not correlated with whether the filter af-
fects an IP address or not, but some prefixes are affected
significantly more heavily than others.

Case Study: Cloudflare We explore how Cloudflare in par-
ticular is affected by Iran’s protocol filter, as Cloudflare hosts
the most IP addresses from our dataset. Cloudflare makes its
entire list of IP addresses publicly available4. Many of these
prefixes are prohibitively large; instead of testing every IP ad-
dress in each prefix, we sampled 256 IP addresses at random
from each prefix to test. We performed a similar experiment
to the one above: given a Cloudflare IP address, we made two
requests to it (first normally, then segmented); IP addresses
that respond in the first condition but time out in the second
condition are likely affected. We repeated this experiment five
times for each prefix.

We found that only two of Cloudflare’s prefixes contained
IP addresses that are affected by the filter: 104.18.0.0/16
and 104.31.82.0/24. All of the IP addresses we tested in
both of these prefixes were affected by the filter, but none of
the IP addresses from the other prefixes were. It is unclear
why these prefixes are targeted specifically. We were unable
to identify any commonality between the sites hosted on these
prefixes compared to unaffected prefixes.

We also performed traceroutes to a sample of the affected
and unaffected IP addresses owned by Cloudflare. We were
unable to identify consistent routing differences between
them. At this time, it is not clear why the protocol filter affects
the IP addresses it does.

4.3 Protocol Fingerprints
By repeatedly, manually tweaking the payloads of permitted
protocols and observing what gets censored and what does
not, we reverse engineered the filter’s fingerprints for each
protocol. Knowing the fingerprints can be a powerful tool
for evaders: recall that the filter only monitors the first two
data-carrying packets, and thus sending compliant packets at
the start of a flow can allow all subsequent packets to bypass
the filter. Since the filter will match any of these fingerprints
on all three ports, any fingerprint can be used on any protocol-
filtered ports.

DNS Fingerprint To match the protocol filter’s fingerprint
for DNS-over-TCP, the following conditions must be met:

1. The TCP payload must be at least 12 bytes long.
2. The query/response (qr) field must be 0.
3. The question count must be less than 15.
4. The answer count must be 0.
5. The structure of the TCP payload must be a valid DNS-

over-UDP header, not a DNS-over-TCP header.

For example, the following message would be permitted by
the DNS fingerprint:

4https://www.cloudflare.com/ips/

\x00\x00\x01\x00\x00\x01
\x00\x00\x00\x00\x00\x00

The last requirement appears to be a bug in the implemen-
tation of the DNS fingerprint. Recall that the DNS-over-UDP
header is slightly different than DNS-over-TCP’s; over TCP,
the DNS header includes a length field [9]. Since the fil-
ter is only active over TCP but does not take the extra field
into account, it will never match a legitimate DNS-over-TCP
packet. We believe the reason this oversight has not caused a
significant issue is because DNS-over-TCP generally only re-
quires a single data-carrying packet from the client, but Iran’s
protocol filter only begins dropping packets on the second
data-carrying packet.

However, the faulty DNS fingerprint does still pose a prob-
lem: clients can reuse DNS-over-TCP connections [7]. In
such cases, the filter would allow the first query, but block any
subsequent queries made within 60 seconds.

HTTP Fingerprint To match the HTTP fingerprint, the fol-
lowing conditions must be met:

1. The TCP payload must be at least 8 bytes long.
2. The payload must start with one of the following HTTP

verbs: GET, POST, HEAD, CONNECT, OPTIONS, DELETE, or
PUT.

3. The HTTP verb must be followed by one space.

Note that two HTTP verbs are not supported by the proto-
col filter: PATCH and TRACE. Any website in the affected IP
address space that uses either of these would be censored.

For example, a message permitted by the HTTP fingerprint
is: GET testing123.

HTTPS Fingerprint To match the HTTPS fingerprint, the
following conditions must be met.

1. The TCP payload must be at least 41 bytes long: 5 bytes
for the TLS header, 36 bytes for the TLS Client Hello.

2. The length field of the TLS Header must correctly de-
scribe the length of the Client Hello.

3. The TLS version header (bytes 2 and 3 of the TCP pay-
load) must be TLS 1.0 (\x03\x01), 1.1 (\x03\x02), or
1.2 (\x03\x03).

The last requirement makes no practical difference; real
TLS 1.x Client Hellos all have TLS 1.0 in this field.

Also, the last requirement again appears to be an error
in the design of the protocol filter. It allows TLS versions
1.0, 1.1, and 1.2 to be declared, but this version field is not
used accurately in practice: TLS servers must accept any two
byte value in this field so long as the first byte is \x03 [8,
Appendix E].

The HTTPS fingerprint does not filter specific HTTPS con-
nections or applications; it simply enforces that generic TLS
is used. As a result, censorship evasion tools that use TLS



will likely be unaffected by the protocol filter at this time,
as they will fulfill the above fingerprint requirements by de-
fault. This also means the protocol filter would spare more
secure DNS transport protocols, such as DNS-over-HTTPS
and DNS-over-TLS, if those protocols were used over one of
the affected ports.

After the first 5 bytes of the packet (the type, version, and
the length), the protocol filter does not check any of the re-
maining contents of the Client Hello. So long as the first 5
bytes match the fingerprint and the packet is of the proper
length, the rest of the packet can comprise arbitrary data and
bypass the filter.

An example message that matches the HTTPS finger-
print is: \x16\x03\x01\x02\x00 followed by 512 null bytes,
where \x16 is the indication of a handshake, \x03\x01 is
TLS version (1.0), and \x02\x00 is the length of the Client
Hello (512 bytes).

Using Fingerprints We find that any of the fingerprints can
be used to evade the filter. This presents an opportunity for
censorship evasion tool developers: by sending any fingerprint
at the start of a connection (or injecting it as an “insertion
packet” [5, 16, 17]), we can ensure the filter will permit the
rest of the flow, regardless of the actual protocol used. As
we will see in the next section, Geneva also independently
discovers strategies to inject innocuous fingerprints from the
client-side.

5 Evading the Protocol Filter

In this section, we demonstrate how to evade Iran’s proto-
col filter. We begin by demonstrating that known evasion
strategies developed against Iran’s standard censorship infras-
tructure do not apply to the protocol filter.

5.1 Old Strategies Do Not Apply
We first explored whether we could apply the same strategies
that work against Iran’s regular censorship system (affecting
HTTP and HTTPS) to evade the protocol filter.5 The only
functioning strategy in Iran we are aware of is simple seg-
mentation: simply splitting the censored request into multiple
packets to take advantage of the censor’s inability to reassem-
ble TCP segments. We find that no other strategies identified
by Geneva or prior work defeats Iran’s censorship system.

Unfortunately, the effectiveness of the segmentation strat-
egy depends on its implementation: it does not necessarily
generalize, and at worst, can be counterproductive to evasion.
In the worse case, if the HTTP request is segmented at a byte
index less than 8, although the regular HTTP censor can no
longer recognize it, the first packet will not match the protocol

5Contrary to the 2013 findings by Aryan et al. [3], from our vantage points,
we find that Iran’s standard censorship infrastructure no longer targets DNS-
over-TCP at all.

filter fingerprints and incur censorship. However, if the HTTP
request is segmented such that the first segment fulfills the
requirements of the HTTP fingerprint (it is at least 8 bytes
long and is well-formed), and the Host: header is split across
the second segment, the strategy can defeat both the protocol
filter and the HTTP censor.

Importantly (and as we will see throughout this section),
merely evading the regular censorship system does not neces-
sarily imply defeating the protocol filter.

5.2 Evolving New Strategies
To identify new strategies to defeat the protocol filter, we lever-
aged Geneva, an open-source genetic algorithm designed to
evolve packet-manipulation strategies to evade censorship [5].
Unlike most anti-censorship systems,Geneva does not require
deployment at both ends of the connection: it runs exclusively
at one side (client or server) and defeats censorship by ma-
nipulating the packet stream to confuse the censor without
impacting the underlying connection. Geneva’s packet ma-
nipulation strategies are expressed in a domain-specific lan-
guage [5]; we describe each in plain English, but to allow us
to unambiguously express strategies, we also present them
using Geneva’s language.
Geneva evaluates strategies with a fitness function, which

returns a numeric score that captures how successful a given
strategy is at evading censorship. Strategies that receive a
higher score are more likely to survive and pass their “genetic
code” to the next generation. Geneva tries to perform some
forbidden action while a strategy manipulates the packet se-
quence: if the forbidden action succeeds, the fitness function
rewards the strategy; if it fails, the strategy is punished. To
apply Geneva to the protocol filter, we wrote a custom fit-
ness function. Our custom fitness function connected to a
vantage point outside of Iran and repeatedly sent messages to
intentionally trip the filter. As Geneva allows for new fitness
functions to be added dynamically, this required no changes
to Geneva itself. Using this fitness function, we can test and
train strategies directly against the filter. Note that this fit-
ness function does not try to trigger the standard censorship
system.

We deployed Geneva against the protocol filter with a sin-
gle evolution from the client-side. We follow the original
training hyperparameters outlined by Bock et al. [5] and con-
figure Geneva with a population pool of 200 individuals and
50 generations. In under two hours, it discovered three simple
strategies that defeat it. All of the strategies discussed herein
have a 100% success rate against the protocol filter.

5.3 Discovered Evasion Strategies
Strategy 1: Innocuous Fingerprint The simplest strategy
Geneva identified was to inject a PSH/ACK packet with a cor-
rupt checksum and an innocuous HTTP request as the payload



immediately following the 3-way handshake. This trivially
serves to bypass the filter, as it matches the protocol finger-
prints. However, because the checksum is corrupt, the server
will not accept this packet. There are other variants of this
strategy that ensure that the filter processes the packet but the
server does not, such as setting the TTL large enough to reach
the censor but too small to reach the server [5].

We note that we did not need to encode anything in Geneva
for it to discover this strategy; Geneva already has the capacity
to replace the TCP payload with a well-formed query for
several protocols within its tamper primitive.

Strategy 1: Innocuous Fingerprint
[TCP:flags:PA]-duplicate(

tamper{TCP:load:replace:GET%20testing123}(
tamper{TCP:chksum:corrupt},),

),)-| \/

Strategy 2: Double FINs This strategy works by sending
two additional packets before the 3-way handshake starts: two
empty packets with the FIN flag set. To the server, the FIN
packets are ignored, as they are not a part of an active con-
nection, but the filter processes them and causes it to ignore
the rest of the connection. We do not understand why this
strategy works, though we hypothesize the FIN packets trick
the filter into thinking it has already missed the relevant data
packets, causing it to ignore the rest of the flow.

Strategy 2: Double FIN
[TCP:flags:S]-duplicate(

tamper{TCP:flags:replace:F}(
duplicate,),

)-| \/

Although Geneva discovers this strategy with two FIN
packets, we find that sending more than two FIN packets
also works.

Strategy 3: Nine ACKs The final client-side strategy we
present is stranger than the first two: this strategy works by
sending nine copies of the ACK packet during the 3-way hand-
shake. This causes the filter to ignore the rest of the flow.
This strategy works 100% of the time, and does not affect
the underlying TCP connection. We hypothesize this works
because the filter has some internal limit on the number of
packets it will process for a given flow.

This strategy does not require ACK packets to work: any
combination of non-data-carrying packets, including RSTs or
SYNs, is also effective. The nine injected packets also need
not have the correct seq or ack numbers: the strategy defeats
the protocol filter regardless.

Strategy 3: Nine ACKs
[TCP:flags:A]-duplicate(

duplicate(duplicate,duplicate),
duplicate(duplicate,duplicate(

duplicate(duplicate,),
))

)-|

This strategy presents us with an opportunity to evade the
protocol filter from the server side. Server-side censorship eva-
sion allows completely unmodified clients to connect directly
to a server while the server subverts censorship on behalf of
the clients [4].

Since Strategy 3 is effective with any set of TCP flags, if
a server can induce the client to send nine non-data-carrying
packets before it sends its forbidden request, we can defeat
the protocol filter. We can accomplish this using a trick from
prior deployments of Geneva: by sending multiple SYN+ACK
packets during the three-way handshake with a corrupted ack
number, we induce the client to respond with multiple RST
packets.

Strategy 4: Nine Induced RSTs, Server Side
[TCP:flags:SA]-duplicate(

tamper{TCP:ack:corrupt}(duplicate(
duplicate(duplicate,duplicate),
duplicate(duplicate,duplicate(

duplicate,))
),),

)-| \/

Strategy 4: Nine Induced RSTs This strategy sends nine
corrupted SYN+ACKs, followed by one unaltered SYN+ACK.
This induces the client to send nine RST packets with cor-
rupted sequence numbers before sending its normal ACK,
thereby evading the protocol filter.

We note that all of these strategies defeat the protocol filter
only, not the regular censorship system that works in tandem.
These allow us to bypass the filter and study Iran’s existing
DPI censorship system in isolation.

6 Conclusion

Early this year, Iran took the latest step in censorship-in-depth
by deploying a protocol filter alongside their standard censor-
ship infrastructure. In this paper, we have performed a deep
investigation into Iran’s protocol filter. Using vantage points
within Iran and servers outside, we empirically demonstrated
how the protocol filter works, what its fingerprints are, and to



a lesser extent whom it filters. Also, using Geneva [4, 5], an
automated tool for discovering censorship evasion strategies,
we identified four ways to bypass the protocol filter—three
from client-side and one from server-side. Our results collec-
tively show that Iran’s two censorship systems can still be
studied in isolation, and bypassed together.

As the censorship arms race advances, we anticipate
censorship-in-depth to become increasingly common. Iran
has had a greater capacity for censorship than they have
exercised in the past, and the protocol filter can pose a
threat to existing deployments of censorship-evasion tools
(VPNs, Tor, etc.). Our results present a path forward that other
anti-censorship researchers and activists can take to quickly
and thoroughly detect, understand, and evade censorship-in-
depth. To this end, we have made our code (including the
custom fitness function for Geneva) publicly available at
https://geneva.cs.umd.edu

Acknowledgments

We thank our shepherd David Fifield and the anonymous
reviewers for their helpful feedback. We also thank the OTF
and OONI communities who have contributed insights and
resources that made this work possible. This research was
supported in part by the Open Technology Fund and NSF
grants CNS-1816802 and CNS-1943240.

References

[1] Collin Anderson. Dimming the Internet: Detecting
Throttling as a Mechanism of Censorship in Iran. In
arXiv preprint arXiv:1306.4361, 2013.

[2] Anonymous. Towards a Comprehensive Picture of the
Great Firewall’s DNS Censorship. In USENIX Work-
shop on Free and Open Communications on the Internet
(FOCI), 2014.

[3] Simurgh Aryan, Homa Aryan, and J. Alex Halderman.
Internet Censorship in Iran: A First Look. In USENIX
Workshop on Free and Open Communications on the
Internet (FOCI), 2013.

[4] Kevin Bock, George Hughey, Louis-Henri Merino, Tania
Arya, Daniel Liscinsky, Regina Pogosian, and Dave
Levin. Come as You Are: Helping Unmodified Clients
Bypass Censorship with Server-side Evasion. In ACM
SIGCOMM, 2020.

[5] Kevin Bock, George Hughey, Xiao Qiang, and Dave
Levin. Geneva: Evolving Censorship Evasion Strategies.
In ACM Conference on Computer and Communications
Security (CCS), 2019.

[6] CAIDA IODA: Internet Outage Detection and Analysis.
https://ioda.caida.org/.

[7] J. Dickinson, S. Dickinson, R. Bellis, A. Mankin, and
D. Wessels. DNS Transport over TCP - Implementa-
tion Requirements. https://tools.ietf.org/html/
rfc7766, March 2016. RFC 7766.

[8] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol: Version 1.2. https://tools.ietf.
org/html/rfc5246, August 2008. RFC 5246.

[9] Paul Mockapetris. Domain Names - Implementation
and Specification. https://tools.ietf.org/html/
rfc1035, November 1987. RFC 1035.

[10] Arian Akhavan Niaki, Shinyoung Cho, Zachary Wein-
berg, Nguyen Phong Hoang, Abbas Razaghpanah, Nico-
las Christin, and Phillipa Gill. ICLab: A Global, Longi-
tudinal Internet Censorship Measurement Platform. In
IEEE Symposium on Security and Privacy, 2020.

[11] OONI: Open Observatory of Network Interference.
https://ooni.org/.

[12] Paul Pearce, Ben Jones, Frank Li, Roya Ensafi, Nick
Feamster, Nick Weaver, and Vern Paxson. Global-Scale
Measurement of DNS Manipulation. In USENIX Secu-
rity Symposium, 2017.

[13] Ram Sundara Raman, Adrian Stoll, Jakub Dalek, Armin
Sarabi, Reethika Ramesh, Will Scott, and Roya Ensafi.
Measuring the Deployment of Network Censorship Fil-
ters at Global Scale. In Network and Distributed System
Security Symposium (NDSS), 2020.

[14] Sparks, Neo, Tank, Smith, and Dozer. The collateral
damage of Internet censorship by DNS injection. SIG-
COMM Computer Communication Review, 42(3):21–27,
2012.

[15] Benjamin VanderSloot, Allison McDonald, Will Scott,
J. Alex Halderman, and Roya Ensafi. Quack: Scalable
Remote Measurement of Application-Layer Censorship.
In USENIX Security Symposium, 2018.

[16] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,
and Srikanth V. Krishnamurthy. Your State is Not Mine:
A Closer Look at Evading Stateful Internet Censorship.
In ACM Internet Measurement Conference (IMC), 2017.

[17] Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian,
Chengyu Song, Srikanth V. Krishnamurthy, Kevin S.
Chan, and Tracy D. Braun. SymTCP: Eluding Stateful
Deep Packet Inspection with Automated Discrepancy
Discovery. In Network and Distributed System Security
Symposium (NDSS), 2020.

[18] Philipp Winter and Jedidiah R. Crandall. The Great
Firewall of China: How It Blocks Tor and Why It Is
Hard to Pinpoint. ;login:, 37(6):42–50, 2012.

https://geneva.cs.umd.edu
https://ioda.caida.org/
https://tools.ietf.org/html/rfc7766
https://tools.ietf.org/html/rfc7766
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc1035
https://tools.ietf.org/html/rfc1035
https://ooni.org/

	Introduction
	Prior Work
	Methodology
	Protocol Filter
	How Iran's Protocol Filter Works
	Whom the Filter Is Applied To
	Protocol Fingerprints

	Evading the Protocol Filter
	Old Strategies Do Not Apply
	Evolving New Strategies
	Discovered Evasion Strategies

	Conclusion

