
Offline Deduplication-Aware Block Separation for Solid State Disk∗

Jeongcheol An
Sungkyunkwan University, Korea

Dongkun Shin
Sungkyunkwan University, Korea

1 Introduction

NAND flash-based solid-state disks (SSDs) are increas-
ingly being deployed in storage systems due to their sev-
eral advantages over magnetic hard disks: lower access
latencies, lower power consumption, and higher robust-
ness. However, their shorter lifetime and garbage col-
lection overhead are critical concerns. As recent SSDs
adopt higher density multi-bit-cell flash memory chips
in order to provide higher capacity, lifetime is becom-
ing worsen. Deduplication can be an effective solution
to increase lifespan as well as space-efficiency in flash
memory SSDs. By eliminating the write operation for
duplicated data, the deduplication techniques can save
the limited endurance of flash memory blocks.

Deduplication can be performed offline or inline. The
inline deduplication examines the incoming data and pre-
vents duplicate writes. Therefore, the inline deduplica-
tion may increase the write latency due to the duplica-
tion checking overhead if most of data are not dupli-
cated or many burst write requests are sent from host.
The duplication checking overhead includes the hash key
generation time and the key lookup time. The offline
deduplication removes the duplicated data to increase
space-efficiency during idle time [2]. Although the of-
fline scheme does not increase the write latency, it cannot
prevent duplicate writes since the deduplication is done
after data has been written on the storage. Therefore,
many inline techniques are proposed targeting to increase
the lifetime of SSDs [3].

However, regular file systems have relatively low du-
plication rate and require short write latency compared
with backup systems. For such systems, the offline tech-
nique will be more efficient. Although the offline dedu-
plication cannot reduce the data amount written at stor-
age, it can reduce the number of page copy operations

∗This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea Government (MEST) (No.
2010-0026511) and (No. 2012-0002117).

during garbage collection if the offline deduplication is
performed before garbage collection. Since the offline
deduplication invalidates duplicated pages, the number
of valid page copies will decrease and thus reduces the
write amplification ratio of SSDs.

In this paper, we propose a block separation technique
for offline deduplication. The goal of block separation
is to minimize the garbage collection cost for the flash
memory blocks by separating duplicate data and unique
data into different flash memory blocks. Since the du-
plicate data will be invalidated by offline deduplication,
the flash memory block assigned for the duplicate data
will have many invalid pages and thus the garbage collec-
tion will require small number of page copy operations.
In experiments with SSD simulator, the proposed block
separation technique reduces the page copy cost during
garbage collection by 20∼61% compared to the normal
offline deduplication.

2 Block Separation

The block separation technique determines the possibil-
ity of duplication for the incoming data before the data
is written at flash memory blocks. To minimize the over-
head on write operation, a lightweight but non-collision-
free hash function such as CRC32 is used to filter out
the non-duplicated data inline. With the non-collision-
free hash function, we cannot identify duplicate data but
it can find unique data. Therefore, the incoming data
can be divided into two types, unique data and non-
determined data.

Figure 1 shows the block separation and deduplication
modules within SSD. The incoming data are first split
into fixed size of chunks. The chunk size is same to the
page size in flash memory (4KB or 8KB). The unique
chunk filter generates a 4-bytes CRC32 hash key for a
chunk and lookups the key in the CRC32 hash key table
which has all hash keys of the written chunks. If the key
is not found, the data is definitely unique within the stor-



fixed chunking

unique chunk 

filtering 

(CRC32)

CRC32

hash table

fingerprinting

(SHA-1)

offline dedup

SHA-1

hash table

V
V
V
V

V
I
V
V

V
V
V
V

I
I
V
I

I
I
I
V

Flash Chips

unique 

data

 non-determined

data

Inline Offline

invalidate
U-Region ND-Region

I

V valid page

invalid page

free page
block0 block1 block2 block3 block4 block5

page 

copy 

(GC)

LPN-to-PPN

mapping table

Figure 1: The proposed SSD Architecture.

age. Therefore, the data is written at the block assigned
for the unique region (U-Region) and the key value is in-
serted into the hash table. If the same key is found at
the hash table, we cannot determine the duplication of
the data since the CRC32 hash function is not collision-
free. Therefore, the data should be examined during the
offline deduplication with a collision-free hash function
such as SHA-1 or MD5. The block separation technique
writes the non-determined data at the block assigned for
the non-determined region (ND-Region). When there is
no free space in each region, a free block is allocated
to the region. Therefore, the sizes of U-region and ND-
region are variable.

During idle time, the offline deduplication generates
the fingerprints (SHA-1 hash keys) of the chunks which
are updated after the previous offline deduplication. For
only the pages within the ND-Region, the deduplication
lookups the generated fingerprints in the SHA-1 hash ta-
ble to find duplicated data. When the offline dedupli-
cation finds duplicated data from ND-region, it invali-
dates the corresponding physical page, and updates the
mapping table, which maintains the address translation
between logical page number (LPN) and physical page
number (PPN), such that the duplicated logical pages
share one physical page. For the pages in U-Region, the
fingerprint (SHA-1 hash key) should be generated by the
offline deduplication but there is no need to search the
key from the SHA-1 hash table to check duplication.

Although the CRC32 hash function is not collision-
free, its collision rate is very low. When we examined
the collision rate of CRC32 for typical storage traces, the
rate was lower than 8× 10−5. Therefore, most of pages
in ND-region have actually duplicate chunks.

By storing the unique data and the non-determined
data into different regions, the flash memory blocks in
ND-region may have many invalid pages invalidated by
the offline deduplication as shown in Figure 1. The
garbage collection will select the block 4 or block 5 for a
victim since it has the smallest number of valid pages. In
the example, only one page is copied before erasing the
block. It can be written at U-Region since it is identified
as a unique chunk after offline deduplication.

(a) Number of Page Copies during GC

(b) Average Write Latency

0

0.2

0.4

0.6

0.8

1

1.2

kernel compile webmail application updateN
o

r
m

a
li

z
ed

 N
u

m
b

e
r 

o
f

P
a

g
e
 C

o
p

ie
s

Online Offline Block Separation

0

0.5

1

1.5

2

kernel compile webmail application update

N
o

r
m

a
li

z
ed

 A
v

er
a
g

e 

L
a

te
n

c
y

Online Offline Block Separation

Figure 2: Experimental Results.

3 Performance Evaluation

Our simulation environment was built by inserting the
deduplication module at the DiskSim based SSD sim-
ulation plug-in [1]. With SimpleScalar-ARM cycle-
accurate simulator, we estimated the SHA-1 and CRC32
hash function latencies as 75µs and 6µs, respectively.
Three storage access workloads are used for evalua-
tion, kernel compile, webmail, and application

update. The kernel compile traces are collected
during kernel code compiling at Linux machine. The
application update trace is collected during applica-
tion version update operations at MS-Windows machine.

Figure 2(a) compares the numbers of page copies
during garbage collection under different deduplication
techniques. The results are normalized by those under
no deduplication scheme. The block separation scheme
significantly reduces the page copy operations compared
with the normal offline technique. Figure 2(b) compares
the average write latencies. The inline dedup shows
longer latencies due to the duplication checking over-
head. The block separation scheme shows lower laten-
cies than those of the normal offline scheme. This is be-
cause the write operations can be delayed by foreground
garbage collection. Since the block separation scheme
reduces the garbage collection overhead, the write la-
tency delay is also reduced.

References
[1] SSD extension for DiskSim simulation environment.

http://research.microsoft.com/enus/downloads/b41019e2-1d2b-
44d8-b512-ba35ab814cd4/default.aspx.

[2] ALVAREZ, C. NetApp deduplication for FAS and V-Series deploy-
ment and implementation guide. Technical ReportTR-3505.

[3] CHEN, F., LUO, T., AND ZHANG, X. CAFTL: a content-aware
flash translation layer enhancing the lifespan of flash memory
based solid state drives. In Proceedings of FAST’11.

2


