A Deduplication Study for Host-side Caches with Dynamic
Workloads in Virtualized Data Center Environments

Jingxin Feng, Jiri Schindler
NetApp Inc.

1 Introduction

Deduplication is a well-known method that improves
storage efficiency and reduces the cost of storage in cor-
porate data centers [3, 4]. For virtualized data centers,
and in particular for virtual desktop infrastructure (VDI),
centrally-managed networked storage can greatly reduce
the overall data footprint because virtual machine (VM)
disk images have largely the same content.

Recent work by Byan et al. [1] suggested employing
flash memory-based host-side caches inside VM hyper-
visors to shed load from the shared storage infrastructure.
They demonstrated that such caches can be effective for
read-mostly workloads with stable working sets. How-
ever, it is not known if they can be as effective in a dy-
namic environment, when virtual machines migrate fre-
quently from one physical server (hypervisor) to another
or when their working sets change. First, since these
caches are large (many 100s of GBs), re-warming them
with the active content to reach a steady state cache hit
rate after a VM migrates to another hypervisor can take
as much as 12 hours [1]. Second, as each VM disk image
is a separate entity, the caches might contain many copies
of the same content even though the network-attached
shared storage system would store only a single instance,
unnecessarily polluting the host-side hypervisor caches
and reducing their overall cache hit rate.

The goal of our study is to explore the effectiveness
of deduplication for large host-side caches in virtualized
data center environments running dynamic VDI work-
loads. To that end, we analyze traces captured from VDI
deployments as well as general enterprise workloads [2].
Understanding the intrinsic properties of data duplication
can help us design effective host-side cache policies. Pre-
vious deduplication systems and studies focused on data
mostly at rest such as backups [4] and archives or on re-
ducing network traffic across a WAN link.

Our study on eight traces in duration from two min-
utes to almost 100 days shows that deduplication can
reduce the data footprint inside host-side caches by as
much as 67%. This allows for caching a larger portion
of the data set and improves the effective cache hit rate.
More importantly, such increased caching efficiency can

alleviate load from networked storage systems during I/O
intensive workloads when most VM instances perform
the same operation such as virus scans, OS patch installs
(a.k.a. update storms), and reboots (a.k.a. boot storms).

2 Our Approach

We seek to improve cache hit rates for large host-side
caches in VDI environments. As step towards our goal,
we want to understand the real world workloads and
assess how much opportunity for deduplication exists.
We focus on discovering duplicate data intrinsic to these
traces regardless of cache size or specific cache replace-
ment policies. Our results provide an upper bound of
cache space saved by deduplication; we realize that the
specifics of cache organization and replacement policies
may reduce the effective cache hit rate we report.

We analyze two sets of traces: two long term CIFS
traces collected in a production enterprise data center [2]
and six VDI traces with 3—-15 VMs. We collected the
VDI traces in our lab while the VMs performed a variety
of typical tasks including login, patch update, and reboot.

We define a metric we term deduplication degree,
which we believe is useful in measuring the effective-
ness of content deduplication. In the context of caching
dynamic workloads, our metric allows us to express di-
rectly the number of references to a unique cached block.
Thus, we define deduplication degree, d, as

d= ?:l L (l)
n

(D

where n is the number of unique cached blocks and L(i)
is the number of references to the ith block(i.e., the num-
ber of addresses that have the same contents).

By using deduplication degree, we can directly eval-
uate cache metadata overheads involved in tracking the
various contexts such as files and offsets for the single
instance of the shared cached block. Recall that block
based caches use a buffer header for each cached block.
The buffer header in a deduplicating cache would also
need to keep additional information such as the block
fingerprint and the backpointers to the context in which
they exist. Deduplication degree can express the average

Comparison of deduplication degrees across workloads

Py — - : : : —
35 | Write o2 o
: R+W mmmm | - o

Deduplication degree (d)

Figure 1: Comparison of deduplication degree for dif-
ferent workloads. Note the different profiles for read-
heavy and write-heavy workloads.

number of references to each data block and thus esti-
mates additional metadata overheads.

3 Preliminary Results

Figure 1 shows the deduplication degree for the 8 traces.
The values range from 1.2 to 3 for combined reads and
writes. For the VDI traces, this translates to saving be-
tween 54% and 67% of space. Larger deduplication de-
grees can be observed when we consider reads and writes
separately. As expected, the boot and login storms ex-
hibit different behavior from update storms. For write-
heady update storms, we observe more duplication in
write requests compared to the five boot traces, which
show little or no duplication in write requests. The dedu-
plication degree for writes in these read-heavy traces is
close to one, meaning that, on average, each unique block
is seen only once by the hypervisor.

The write-heavy update storms show high deduplica-
tion degree for reads as well. Yet, we see little or no in-
crease for the boot storm traces as the number of virtual
machines per hypervisor increases from 10 to 15 (Boot-1
and Boot-2 vs. Boot-3). For the boot+login storm traces,
deduplication degree increases slightly for the reads as
more VMs are added (BL-1 vs. BL-2).

Figure 2 shows the reference count CDFs for our
traces. For most workloads, more than 90% of the data
blocks are referenced no more than 15 times. The CDFs
have long tails, which means that a few blocks have large
number of duplicates. That is, a single instance of the
block in a cache would have a large number of refer-
ences. For example, in CIFS Eng trace, 95% of blocks
are referenced less than 10 time. At 100%, the reference
count jumps to almost two million. In a deduplicated
cache, all the addresses that have the same content need
to be stored in memory as references. If one pointer takes
4 or 8 bytes, as shown in Figure 2, 95% of data blocks use
less than 60 or 120 bytes to store references respectively,
while some may take 7 or 14M.

CDF of reference count

Block reference count

Figure 2: CDF of block reference count for all traces
with three distinct profiles.

4 Conclusion

We believe that deduplication degree captures a useful
concept for evaluating cache effectiveness for dynamic
workloads; It is directly correlated with the reference
count (pointers) needed to link the single instance copy
of the data shared among multiple contexts (e.g., VM
disk images). Our data suggests a design point where
reference counts of less than 100 capture over 99% of all
duplicates for most workloads. Besides duplication de-
grees in different workloads, we are also analyzing sim-
ilarity of VDI traffice, deduplication sensitivity to cache
block size and other aspects that may provide us design
insights on host-side cache in VDI environment.

References

[1] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Con-
dict, J. Kimmel, S. Kleiman, C. Small, and M. Storer.
Mercury: Host-side flash caching for the data center.
In Proceedings of the 28th Symposium on Mass Stor-
age Systems and Technologies (MSST), 2012.

[2] A. W. Leung, S. Pasupathy, G. Goodson, and E. L.
Miller. Measurement and analysis of large-scale
network file system workloads. In Proceedings of
the annual conference on USENIX Annual Technical
Conference, 2008.

[3] K. Srinivasan, T. Bisson, G. Goodson, and K. Voru-
ganti. iDedup: latency-aware, inline data deduplica-
tion for primary storage. In Proceedings of the 10th
USENIX conference on File and Storage Technolo-
gies, 2012.

[4] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file sys-
tem. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, 2008.

	Introduction
	Our Approach
	Preliminary Results
	Conclusion

