
Reverse Deduplication: Optimizing for Fast Restore

Zhike Zhang Preeti Gupta Avani Wildani Ignacio Corderi Darrell D.E. Long
Storage Systems Research Center, University of California, Santa Cruz
{zhikezhang, preetigupta25, avani, icorderi, darrell}@cs.ucsc.edu

1 Introduction

Data deduplication has become an important part of the
data storage industry, with most major companies pro-
viding products in the space. As additional data is added
to a deduplicated storage system, the number of shared
data chunks increases. This leads to the fragmentation of
the data in the system, which in turn leads to increased
seek operations and decreased performance. The chal-
lenge for all companies is to provide high performance
both at the time of data ingest, and also during data re-
trieval. In many cases, the primary use of deduplicat-
ing storage systems is to provide an alternative to tape-
based back-up. For these systems, performance during
ingest is important, and the most common retrieval case
is the most recent back-up. But due to the nature of ex-
isting deduplication algorithms, the most recent back-up
is also the most fragmented, resulting in performance is-
sues. We propose to address this issue by changing the
way deduplication is done. We developed algorithms to
eliminate much of the fragmentation for the most com-
mon case, restoring from the most recent back-up.

2 Related Work

As the data in the system increases, so does the frag-
mentation of the data. The degree to which this occurs
is believed to be worse than in a traditional file system.
Some have proposed performing periodic defragmenta-
tion. Disk defragmentation is more difficult in the pres-
ence of deduplication because all references to a chunk
must be updated before moving the chunk. Macko, et
al. [1] propose the use of back references to solve prob-
lems such as finding all file i-nodes in a deduplicated sys-
tem that reference a block being defragmented. These
back references can be used to prevent the file system
from having to iterate over the set of all files to find all
referenced blocks.

Figure 1: shows chunk signatures pointing to chunk de-
scriptors which are pointing to physical chunks

3 Reverse Deduplication

As additional data is added to a deduplicated storage sys-
tem, the number of shared data chunks increase. This
leads to the randomization of the data in the system,
which in turn leads to increased seek operations and de-
creased performance. This problem occurs regardless of
whether the storage system is based on files, segments, or
virtual tapes. The existence of shared chunks means that
those chunks will with high probability not be contiguous
and so require additional seeks. We believe that the best
approach is to fundamentally change the way in which
deduplication is done in the storage system. Currently,
as new data segments are added, they are deduplicated
against the existing corpus and duplicate chunks are not
stored. The result is that newer segments have greater op-
portunity to find existing chunks, and so may be increas-
ingly fragmented as the storage system grows. Instead,
we propose to invert the deduplication process. Each
new segment will be written contiguously, and older data
segments that share chunks in the new segment will ref-
erence those chunks. The result is that the most com-
mon operation, restoring the most recent copy, will be
the most efficient.

Efficiently managing the chunks is essential for per-

Page 1



Figure 2: shows the throughput of the restore operation

formance. Typically, the chunks are reference counted.
A chunk in segment n− 2 might reference a chunk in
segment n− 1 which references a chunk in segment n.
A system with so many indirect references will perform
poorly when restoring older versions.

One possibility would be to restructure the data as
part of the cleaning process. But a better approach
would be to introduce chunk descriptors associated with
a chunk signature, and reference counted to improve per-
formance. It would have a pointer to the actual physi-
cal chunk (shown in Figure 1). In the case when the
physical location of the chunk moves, we need to up-
date only the chunk descriptor. Due to the reverse chunk-
ing scheme, older data segments will develop holes (por-
tions of the data segment that are no longer referenced).
The data accesses will be less contiguous, and so per-
formance for older segments will decrease [2]. Our goal
is to keep newer backups more contiguous because they
are the most common case for restoration. Older backups
will necessarily develop more and more holes.

The solution suggested is an explicit trade off between
storage space and retrieving older backups vs. retrieving
newer backups.

4 Current Status

We implemented prototypes for Naive Reverse Dedu-
plication, where data is being deduplicated amongst the

Figure 3: total retrieval time for the most recent backups

most recent backups of other users and within itself and
Optimized Reverse Deduplication, where data is not be-
ing deduplicated amongst the most recent backups of
other users and within itself. So for optimized reverse
deduplication the most recent backup is not being dedu-
plicated at all till the next most recent backup arrives.

Experiment results are shown in Figures 2 and 3. Fig-
ure 2 shows that most recent backup restore throughput
for backup systems using optimized reverse deduplica-
tion is four times faster than traditional deduplication
backup system. Traditional deduplication is sub opti-
mal, as shown in Figure 3, while reverse deduplication
degrades linearly going back in time but still performs
better than traditional deduplication.

References

[1] P. Macko, M. Seltzer, and K. Smith, “Tracking back
references in a write-anywhere file system,” in Pro-
ceedings of the 8th USENIX conference on File and
storage technologies, 2010.

[2] R. C. Burns and D. D. E. Long, “Efficient distributed
backup with delta compression,” in Proceedings of
the fifth workshop on I/O in parallel and distributed
systems, 1997.

Page 2


