
Energy-Aware Storage

Yan Li1, Christina Strong1, Ignacio Corderi1, Avani Wildani1, Aleatha Parker-Wood1,
Andy Hospodor1, Thomas M. Kroeger2, Darrell D. E. Long1

1Storage Systems Research Center, University of California, Santa Cruz, CA 95064, USA
2Sandia National Laboratories, Livermore, CA 94550, USA

1 Introduction

Energy is swiftly becoming a gating issue in large
scale storage systems, from high-performance comput-
ing (HPC) to data intensive applications. For example,
the Square Kilometre Array (SKA) [3] is a large radio
telescope array expected to be finished by 2024. Its
dishes will produce about one exabyte (EB) of raw im-
age data per day. However, the power envelope goal for
the storage systems of future exascale supercomputers
has been set at ≈ 2 megawatts (MW) [2]. Based on this
projection, we can predict that, by 2020, under the en-
ergy cap, a supercomputer will at most be able to pro-
vide 2 to 3 EB storage for the scratch space, which is far
from enough for most of the planned applications. Thus,
new technologies must be developed to reduce the energy
consumption of future storage systems. The amount of
power a large-scale computer is allowed to use is not the
only concern, however. Computation has become rela-
tively cheap, and new trends [1] suggest that data move-
ment will be a major proportion of the power dissipation
in future systems.

2 Approach

We address both concerns by considering energy con-
sumption as a key design constraint in large-scale dis-
tributed storage systems. We are developing a new en-
ergy profiler for efficient energy consumption measure-
ment. Concurrently, we conduct a workload study of
large scale scientific workloads. This will allow us to
identify characteristics of scientific workloads and de-
velop optimizations based on the type of workload. In or-
der to evaluate new architectural changes and algorithms,
we are developing an energy simulator that can predict
the energy consumption of a complex storage system.
We are developing data allocation algorithms that take
power consumption into account by moving data as little
as possible on both a geographical and temporal level.

Profiling Energy Cost A key requirement of de-
signing an energy-efficient system architecture is to ac-
curately measure the energy cost in the runtime phase.
Without this information, optimization and trade-offs
can only be guesswork. The measurement can be hard
because an HPC program normally accesses thousands
of pieces of hardware, which can be in many different
power-saving modes, not to mention that an HPC system
is often shared among many programs. We are research-
ing a new metric called energy score, which reflects the
energy consumption of operations or the energy needed
to generate data objects.

For example, the energy score for compressing a
bitmap picture to JPEG depends on (1) the energy needed
for loading the source picture from storage to memory,
(2) the CPU time used for the compression, and (3) the
energy needed for storing the result. (1) and (3) in turn
depend on the distance and power-saving mode of the
storage, and (2) depends on the CPU’s speed.

Energy score is fast to calculate and comparable across
applications running on the same HPC system. It can be
used both at the runtime phase or at the design phase. It
is calculated by an OS-level profiler and can work with
existing programs with or without actual power meters.

Architectural Changes and Simulating Energy Us-
age The requirements for reliability and performance
vary greatly between applications, and future systems
will need to dynamically balance between reliability, per-
formance, and energy cost. To achieve this, we are ex-
ploring several architectural changes: (1) near-node stor-
age, (2) using heterogeneous storage devices, like com-
bining SSD and hard drives, (3) splitting the central stor-
age system to several smaller storage systems and dis-
persing them among the system to reduce the distance
between nodes and storage, (4) aggressive power man-
agement for storage racks, i.e., powering off a whole
storage rack if possible, and (5) extensive use of com-
pression. Thus, we need to find answers to many what-
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if questions, like, “How much energy can we save by
adding near-compute-node SSD storage?”

However, evaluating the effectiveness of these changes
can be difficult and expensive. It is hard to test architec-
tural changes on real hardware because HPC systems can
be very expensive to build. Therefore, we are designing
an energy simulator that can simulate the energy cost of
a complex computer storage system, which may include
millions of storage devices.

By measuring the energy consumption of individual
devices in different running modes, we are building an
energy footprint database for devices used in an HPC
system. The energy simulator uses virtualization to run
the real OS and middleware with virtual devices that cal-
culate the cumulative energy consumption from all oper-
ations by using the energy footprint database (Figure 1).
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Figure 1: Simulating the storage stacks of multiple con-
nected machines and storage systems. Note that the
real computational intensive application is replaced by a
“mock application” so that we can simulate hundreds of
machines on one computer. Devices will be simulated by
virtual devices connected to the virtual nodes. Each vir-
tual device and machine calculates its respective energy
consumption.

Energy-Efficient Data Allocation Data allocation
places an important role in distributed storage systems,
even more so for systems that consist of heterogeneous
devices. For non performance critical projects, most of
the storage devices should be powered off to save energy,
requiring better file grouping strategies. For projects that
require high performance I/O, various levels of cache
and SSD will be deployed to provide enough bandwidth
while at the same time unneeded hard drives will be pow-
ered off. For large simulation applications where small
errors from a small number of nodes won’t affect the final
result much, lowering redundancy levels and optimiza-
tions, like lazy flushing, show potential for reducing the
energy consumption. They all require smarter data allo-
cation algorithms.

In order to reduce the movement of data, we are look-
ing into developing data allocation algorithms that use
multi-objective optimizations. Currently we are devel-
oping and evaluating an algorithm that explores the re-
dundancy provided by reliability features. Taking the
distances between storage devices into consideration,
by placing data within a redundancy group diagonally
across devices, i.e., different copies of the same data will
be stored as far as possible from each other, different
computer nodes will use different paths for accessing dif-
ferent copies of the same data, or from neighbor nodes to
save the communication with the central storage system.
By placing data copies physically far from each other, we
can also aggressively power-off unused copies of data to
save energy. The drawback of this algorithm is possibly
higher metadata management overhead.

Another algorithm we are developing identifies groups
of data objects that are often access together and places
them near each other for reducing the number of devices
needed to run a specific workload. The workload traces
we collected help us understand the data access patterns
among different workloads, and we are evaluating var-
ious machine learning algorithms with these traces for
both online and offline data grouping.

3 Current Status

We are currently designing the energy score profiler, sim-
ulator, and algorithms for data allocation. To support and
evaluate the designs, we are working with our industry
partners on acquiring workload traces from various envi-
ronments. We are in the process of acquiring through our
industry partners two separate petabyte storage systems
for observing and collecting data: one is for astrophysics
computing and the other is for genomic data processing
cluster. These two storage systems will give us a starting
point, while we continue negotiations with NASA and
various national laboratories to get other workloads.
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