
On-demand Indexing for Large Scientific Data

Brian A. Madden Aleatha Parker-Wood Darrell D. E. Long
Storage Systems Research Center, University of California, Santa Cruz

{madden, aleatha, darrell}@cs.ucsc.edu

Introduction

Enabling search alleviates the need for manual file man-
agement, allowing users to find files by the features that
are most relevant to them. Despite the need for a com-
prehensive file system search, most file system indexing
work has focused on adapting existing solutions such as
the RDBMS or spatial trees to index files. Although
a step in the right direction these approaches have fo-
cused their testing on typical POSIX metadata which
is fully populated, low dimensional, and primarily nu-
meric [2, 3]. By contrast, scientific data is high dimen-
sional, heterogeneous, and very sparse [4]. These find-
ings indicate that approaches such as naive row-major
databases, and spatial trees scale poorly to scientific data
as they waste space to store null values, have inflexible
schemas, and have trouble with many to one values.

We propose an indexing technique called On-demand
Indexing, which will create relevant indexes at search
time if one does not already exist, while simultane-
ously providing query results. On-demand indexing
will achieve scalability by only indexing searched for
terms as well as utilizing a storage substrate better suited
to high dimensional, heterogeneous, sparse data. De-
spite the simple approach of indexing everything that is
searched for, we believe that like web search [1], file sys-
tem search term frequency follows a power-law distribu-
tion. This means that a majority of searches will be the
result of a few frequently searched terms. As a result the
system would provide low latency, high precision, high
recall search without the storage and computational over-
head of indexing all data.

Architecture

The on-demand indexer will consist of three main com-
ponents: the filter, the indexer, and the storage substrate.
The ingest process will handle pre-processing of data. It
will collect and store a table of which files contain which

features, attributes, and content; this data is known as fil-
ter data. The indexer will create and manage indexes by
using filter data to determine if new files must be parsed
and indexed, or old index records pruned. Rather than
naively processing all data when an index must be built,
the indexer will check the filter data to know exactly
which files contain relevant attributes and must be pro-
cessed further. This will aid in scalability by eliminating
the need for computationally expensive, memory intense
brute force techniques. Both the filter data and the in-
dex data will be stored in a column store. Column stores
group data on disk by column, offering a number of ben-
efits for our uses such as a flexible schema, and better
compression compared to typical row based approaches.

The Filter: As a file is written, it will be parsed by the
filter for important data such as column headings, meta-
data fields, or even content markers, and noting which
files contain these attributes. This data will be used to
speed up subsequent indexing by reducing the set of files
that must be parsed to create an index. Filter data will
be collected by pluggable transducers specific to the data
format as data is ingested. The filter data will be stored
along side index data within a column store. In addition
to collecting data on new files, the filter will be respon-
sible for tracking file updates as well. When files are
updated, the file system will notify the filter to remove
filter data and invalidate index entries that are no longer
accurate, as well as track the update times of files.

The Indexer: When a query is issued to the indexer
it will first check to see if there is an index for the query
terms. If one or more indexes does not exist it will use
filter data to determine which files must be further pro-
cessed to create the relevant indexes. Once a list of files
has been narrowed via the filter data, the indexer will
parse the relevant files and build the appropriate indexes.

If one or more indexes does exist at query time, the
indexer will verify that they are up-to-date by first veri-
fying that the filter data does not contain additional files
to be processed for that index, as well as checking for

1



invalidated index entries. If there are no such entries the
query is answered with index data. If the filter data con-
tains new files to index they will be parsed and added to
the index. If entries have been invalidated the query is
answered, and the index pruned.

Storage Substrate: Informed by Parker-Wood et al.’s
study of scientific data [4], the on-demand indexer will
make use of a column store as storage substrate. Group-
ing data by column provides a number of benefits. First,
new columns can easily be added to a table as needed.
This allows for the table schema to change without
the need for an administrator to curate or modify the
database. Second, null values need not be explicitly
stored, providing at least a 20% storage savings based
on Parker-Wood’s sparsity observations. Third, column
stores are capable of dealing with high cardinality data,
data that has multiple values per attribute, without ex-
plicitly managed schemas or human curation. Last, the
column store, by grouping data by column, allows for
in situ optimizations such as keeping the column sorted
on disk, eliminating the need for an additional separate
index to be constructed over that column.

Status

Currently the on-demand indexer is still in the initial
stages of development. Apache’s HBase has been se-
lected as the column store to facilitate easy integration
with Hadoop and HDFS in the future.

Currently we are working on the ingest process, which
is nearing completion. Transducers have been built to
handle csv, and XML data formats and there are plans
to also accommodate the HDF and NetCDF scientific
formats. Once the ingest process is finished the indexer
will be built, and tested by using HBase’s in-built query
optimizer and search. As the project matures additional
search strategies may be tested.

In addition to code development we are collecting test
data and sample queries to evaluate the project on real
world data and real world queries.

References

[1] BAEZA-YATES, R. Applications of web query min-
ing. In Proceedings of the 27th European confer-
ence on Advances in Information Retrieval Research
(Berlin, Heidelberg, 2005), ECIR’05, Springer-
Verlag, pp. 7–22.

[2] LEUNG, A., ADAMS, I. F., AND MILLER, E. L.
Magellan: A searchable metadata architecture for
large-scale file systems. Tech. Rep. UCSC-SSRC-
09-07, University of California, Santa Cruz, Nov.
2009.

[3] NAPS, J., MOKBEL, M., AND DU, D. Pantheon:
Exascale file system search for scientific computing.
In Scientific and Statistical Database Management,
J. Bayard Cushing, J. French, and S. Bowers, Eds.,
Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2011, pp. 461–469.

[4] PARKER-WOOD, A., MADDEN, B., MCTHROW,
M., AND LONG, D. D. E. Examining extended and
scientific metadata for scalable index designs. Tech.
Rep. UCSC-SSRC-12-07, University of California,
Santa Cruz, Dec. 2012.

2


