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1. INTRODUCTION

Distributed storage can and should be elastic, just like
other aspects of cloud computing. When storage is pro-
vided via single-purpose storage devices or servers, elas-
ticity is useful for reducing energy usage. For stor-
age provided via multi-purpose servers, however, such
elasticity is needed to provide the cloud infrastructure
with the freedom to use those servers for other purposes,
which may be particularly important for increasingly
prevalent data-intensive computing activities (e.g., data
analytics).

Unfortunately, most distributed storage is not elastic.
The Hadoop Distributed File System (HDFS) [1], for
example, uses a psuedo-random data layout mainly for
data availability and load balancing. But, such a data
layout prevents elasticity by requiring that almost all
nodes be active—no more than one node per rack can
be turned off without a high likelihood of making some
data unavailable.

Recent research has provided new data layouts and
mechanisms for enabling elasticity in distributed stor-
age. Most notable are Rabbit [2] and Sierra [5]. Both
organize replicas such that one copy of data is always
on a specific subset of servers, termed “primaries”, so
as to allow the remainder of the nodes to be powered
down without affecting availability. Writes directed at

powered-down servers are instead written to other servers—

an action called “write offloading” [4]—and then later
reorganized (when servers are turned on) to conform to
the desired data layout.

Ideally, an elastic storage system should provide high
performance, good fault tolerance, flexibility to shrink
to a small fraction of servers, and the ability to quickly
resize system footprint (termed “agility””) with minimal
data migration overhead. However, achieving all these
goals at the same time is very difficult. As a result,
state-of-the-art elastic storage systems usually have to
make painful tradeoffs. For example, Sierra balances
load across all active servers for good performance, but
its system footprint can never go below one third of
the total cluster size, and the migration overhead to re-
store the orginal data layout is significant when turning

servers back on. Rabbit provides good agility by using
an equal-work data layout with a very small primary set
(about 10% of the cluster size). Unfortunately, however,
it suffers from write performance degradation, because
each primary server has to service many more writes
than the others, which can them performance bottle-
necks. The write performance problem can be mitigated
by using the offloading technique described in Ever-
est [4]. However, offloading writes from primaries to all
the active servers incurs significant migration overhead
when shrinking system size. As a result, the improved
performance comes at a high cost in system agility.

We briefly overview a new elastic distributed storage
system, called JackRabbit, focusing on its new policies
designed to maximize the agility of elastic storage while
accommodating performance and fault tolerance goals.
JackRabbit builds on the Rabbit system for elastic sizing
down to a small percentage of the cluster, and introduces
new policies for data placement, workload distribution
and data migration. For additional details and further
evaluation, see [3].

2. JackRabbit POLICIES

This section describes the read/write offloading and
passive migration policies used in JackRabbit.

When applications simultaneously read and write data,
JackRabbit can coordinate the read and write requests
so that reads are preferentially sent to higher numbered
servers that naturally handle fewer write requests. By
taking read work away from the low numbered servers
(which are the bottleneck for writes), JackRabbit can in-
crease write throughput without changing the offloading
factor. We call this technique read offloading.

Write offloading policy consists of two parts—write
performance offlaoding and write availabiliity offload-
ing. Write performance offloading is a technique used
when the target server is active, but is deemed to be a
performance bottleneck. Rather than being sent to the
server chosen by the equal-work layout agent, offloaded
writes are sent to a server with low load. JackRab-
bit’s write offloading policy has two key features. First,
it bounds the set of servers for which any cleanup is



needed before extraction to as small a set as possible,
given a target maximum write throughput. Second, it
provides peak write throughput controlled by a param-
eter called the offloading factor, for which the value
can be dynamically tuned to trade-off between maxi-
mum write throughput and cleanup work. When the
equal-work layout policy tries to write a block to a host
that is currently inactive, JackRabbit must still main-
tain the target replication factor for the block. To do
this, another host must be selected to receive the write.
JackRabbit load balances availability offloaded writes
together with the other writes to the system. This tech-
nique is called availability offloading. Figure 1 illus-
trates the write offloading policies used in JackRabbit,
when the offload set consists of m > p servers.
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Figure 1: JackRabbit write offloading policy

Reintegrating a server that is previously deactivated is
more than restarting its software. While the server can
begin servicing its share of the write workload immedi-
ately, it can only service reads for blocks that it stores.
Thus, filling it according to its place in the equal-work
layout is part of full reintegration, which involves mi-
grating data blocks from other servers. Instead of agres-
sively fixing data layout before reintegrated servers be-
gin servicing reads, JackRabbit activates more servers
than needed to satisfy the read throughput requirement
and utilizes the extra bandwidth for migration work. To
avoid migration work building up indefinitely, the mi-
gration agent sets a time threshold so that whenever a
migration takes place, it is garanteed to finish within
T minutes. With T set to be larger than 1 (the default
resizing interval), JackRabbit delays part of the migra-
tion work while satisfying throughput requirement. Be-
cause higher numbered servers receive more writes than
their equal-work share due to write offloading, the de-
layed migration work can be amortized during future
writes, which reduces the overall amount of data migra-
tion. This technique is called passive migration.

3. EVALUATION

JackRabbit is implemented as a modification of Rab-
bit, which itself is a modified instance of the Hadoop
Distributed File System (HDFS), version 0.19.1. We
evaluate JackRabbit by comparing it to Rabbit, Sierra
and an imaginary “ideal” system where elastic resiz-
ing requires no cleanup work, with a trace from a real
Hadoop deployment at Facebook.

Figure 2 shows the number of active servers needed
as a function of time by each system, using passive mi-
gration with a migration threshold T set to be 10 min-
utes. The area under each curve represents the machine
hour usage. As expected, JackRabbit exhibits better
agility than Rabbit, especially when shrinking the size
of cluster, since it needs no cleanup work until resizing
down to the offload set. JackRabbit also outperforms
Sierra because its minimum system footprint is well be-
low one third of the cluster size, and it requires less mi-
gration work when restoring reintegrated servers. The
read, write offloading combined with passive migration
policies maximizes JackRabbit’s agility and enable it to
achieve a “close-to-ideal” (within 4%) machine hour us-
age, improving over state-of-the-art elastic storage sys-
tems by approximately 20%.
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Figure 2: Machine hour usage (with Facebook trace)
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