
Cloud Storage System which Prohibits Information Leakage
on Both Client and Server

 Kuniyasu Suzaki*, Toshiki Yagi*, Kazukuni Kobara*, Nobuko Inoue‡, Tomoyuki Kawade‡, Koichiro Shoji‡
{k.suzaki , yagi-toshiki , k-kobara}@aist.go.jp, {ninoue , kawade , shoji}@sciencepark.co.jp

* National Institute of Advanced Industrial Science and Technology(AIST), ‡SciencePark Corporation

1. Introduction
Most information leakages on cloud storage occur on
both edge machines, i.e. servers and clients, rather than
network. For example, an administrator of a server may
peek through user’s information and a user may leak
information from an application with mis-configuration
on user’s client machine.

We propose a Virtual Jail Storage System (VJSS) to
solve this problem. Our system encrypts a file with All-
Or-Nothing Transform (AONT) and cut off a small part
of the encrypted file. The small part is stored in a client
as a split tally and the other part is up-loaded on some
cloud storage systems after encoding of Reed-Solomon
error correction code. The original file is reconstructed
with the split tally in the VJSS on a client. Furthermore
the file is managed by access control on the storage
system. Files in the VJSS can be opened by a suitable
application but cannot be copied, printed, and screen-
captured&pasted. This system is implemented on
Windows 7.

2. Prohibition of Information Leakage on Server
While Cloud Storages are becoming popular,
information leakage from them is concerned about. For
example, even if a file is encrypted by a user with a
password, the file may be decrypted by a brute-force

attack. In addition, Dropbox had an incident that it
accepted any password to log in to customers' accounts
in 2011.

 Our Virtual Jail Storage System (VJSS) uses not
only encryption but also a split tally. The small split
tally of encrypted file is stored only in a client and has
enough entropy. Therefore brute force attacks cannot
be applied on servers. The split tally is needed to
reconstruct the whole file. Figure 1 shows the whole
image of our VJSS. A file is uploaded through three
stages; encryption, cutting off a small split tally, and
encoding for error correction. As encryption, we
employ All-Or-Nothing Transform (AONT), since
AONT endorses that the original file is reconstructed
only if the whole parts of the encrypt file are gathered.
Our VJSS cuts off a small part of the encrypted file as
a small split tally and keeps it on a client so that VJSS
on it can reconstruct the original file. The remaining
data where the split tally is removed are divided
according to the error correcting code and then
uploaded to some cloud storage systems. The
redundancy in the distributed data enables the recovery
even if a server stops its service. We know most cloud
servers offer high reliability, but there are still some
incidents to fail services. We think we should avoid the
risk to depend on only one service. Furthermore, the
redundancy also make possible to balance the loading
data on a client. For the error correcting code, we
employ Reed-Solomon since it is widely used and has
open-source libraries.

The technique which combines AONT and Reed-
Solomon is resemble to AONT-RS[2], but our
proposed technique adds split tally to prevent
information leakage when all server data are gathered.
Furthermore, our method includes simple deduplication
to reduce network traffic. The processes for uploading
and reconstructing a file on VJSS are shown in figure 3
and 4. A file is divided into small pieces for
deduplication. If some small pieces have same contents,
they are shared by deduplication. The deduplication is
also applied on existing pieces of other files and
reduces the total network traffic. Even if the
deduplication is simple, it can find many same pieces
when the VJSS is used as a file backup system.

Figure 1. Overview of Virtual Jail Storage System
(VJSS).

3. Prohibition of Information Leakage on Client
Information leakage on a client machine can be caused
by inadvertent copying a file to USB memory or
printing papers. If a user has evil intent, he/she can
move the contents by screen-capture&paste. PDF file
can add options to prevent printing and screen-
capturing&pasting, but normal file cannot be set such a
security function.

Our VJSS offers virtual jail storage to distribute a
file from cloud storage services. A file reconstructed in
the VJSS is guarded by an access control called
“NonCopy” which prevents Information leakage on the
client. As shown in figure 1, NonCopy prevents
copying the file, printing the file, and screen-
capturing&pasting of the file.

The NonCopy is a set of hooking for APIs of
Windows kernel, functions of DLL, and event handlers.
I/O APIs for a VJSS are hooked and copying a file is
prevented. Function table for printing DLL is hooked
(e.g., StartDoc function), and printing is prohibited.
Event messages for keyboard and mouse are hooked by
SetWindowsHookEx and screen-capturing&pasting is
prevented.

4. Current Implementation
Current VJSS is based on Loopback Content
Addressable Storage (LBCAS) [3,4], and adds security
functions. The VJSS is implemented on Windows 7. It
uses “Dokan[1]” for user mode file system, BerkleyDB
for managing data, and some libraries for AONT and
Reed-Solomon.

The VJSS is created as a client application and
does not require special function on servers. The
servers only have to work as data storage (i.e., file
server or database). We plan to use Amazon S3,
Dropbox, and other popular cloud storage services.

Reference

[1] Dokan: http://dokan-dev.net/en/
[2] J. Resch, and J, Plank, AONT-RS: Blending Security

and Performance in Dispersed Storage Systems,
USENIX FAST’11.

[3] K. Suzaki, T. Yagi, K. Iijima, and N.A. Quynh, OS
Circular: Internet Client for Reference, USENIX
LISA’07.

[4] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, Analyze
Disk Access Pattern of File Systems for Content
Addressable Storage, Ottawa Linux Symposium’11.

Figure 2. Uploading a file on servers for VJSS.

Figure 3. Reconstructing a file on VJSS.

	1. Introduction
	2. Prohibition of Information Leakage on Server
	3. Prohibition of Information Leakage on Client
	4. Current Implementation

