
Extension of S3 REST API for Providing QoS Support in Cloud Storage

Yusuke Tanimura1 and Seiya Yanagita1,2

1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
2 SURIGIKEN Co., Ltd.

yusuke.tanimura@aist.go.jp, yanagita@suri.co.jp

1 Introduction

In the IaaS (Infrastructure as a Service) cloud environ-
ment where virtual machines are deployed, a scalable
and reliable storage service is indispensable for hosting
virtual machine images, backups, large volumes of appli-
cation data, etc. Amazon S3 (Simple Storage Service) [3]
is one of the storage services to meet such demands for
Amazon EC2 [2] users. Swift [9] takes the similar role in
OpenStack [7] and provides the S3 compatible interface
in addition to its own interface. Although the S3 im-
plementation considers scalability, there is a concern for
performance instability when many applications heavily
access S3, due to the characteristics of shared resources.
Replication and load balancing mitigate the problem but
they might not respond every individual request of the
applications. Amazon EBS [1] which delivers dedicated
performance to the application would not be reasonable
for storing large data, in terms of the financial cost and
the limitation of shared use. It would be useful that users
store large data in S3 for a long term, with low cost, and
only when they request with more payment, they can ac-
cess the data with a certain level of performance.

This paper presents an approach which allows users to
have specific I/O throughput in use of S3, by making an
advance performance reservation. The reservation is in-
tended to be used as a user’s explicit request to S3 in the
above. To provide this feature, a storage system which
supports the performance reservation is used at the S3
backend, and I/O operations of S3 REST API are ex-
tended to be conformed to the reservation-based access
to the storage system. Both S3 client and server proto-
types are implemented and then evaluated to examine the
QoS capability at the S3 data transfer, under the situation
where multiple S3 clients access the same resources.

2 Design

In this study, Papio is used at the S3 backend for provid-
ing the QoS-enabled I/O function through the S3 server.
Papio is an object-store type storage that supports par-
allel I/O and the performance reservation functional-

ity [10]. The ‘bucket/object’ semantics of Papio is simi-
lar to the S3 one. However, when a bucket is created on
Papio, an amount of disk space that a user requested is
reserved for the bucket. Then the user can reserve I/O
performance with desired throughput (e.g. MB/sec), ac-
cess type (write or read), and access time (from start to
end), for the bucket to write, or for an object in the bucket
to read. The reservation ID is issued by Papio when the
reservation is accepted. The user’s program as a Papio
client can access the bucket or the object with the reser-
vation ID. Internally Papio allocates storage resources
according to the reservation, and controls I/O throughput
of storage devices and the storage network to provide the
requested throughput to the Papio client.

The extension of S3 REST API to use the Papio’s
reservation functionality is designed as follows. First
‘PUT Bucket’ of the S3 operation, for creating a new
bucket, is extended for the space reservation. Optional
parameters for specifying a space requirement; size, life-
time, write and read throughputs at access time, etc. are
added in the request element of ‘PUT Bucket.’ Second
‘PUT Object,’ ‘GET Object’ and ‘Initiate Multipart Up-
load’ for writing or reading data are extended for the
reservation-based access. The optional parameter named
‘X-Papio-Access-ID’ for setting a previously obtained
reservation ID is added in the request header of those S3
operations. When the parameters are set in the client re-
quest, the S3 server uses them at the access to Papio. Be-
sides, when they are not set, the S3 server automatically
makes a reservation to Papio, with a default minimum
requirement given by the S3 administrator. Since the au-
tomatic performance reservation is made just before the
access, if resources are not available to meet the default
requirement, the access will be an error. However, this
design allows the S3 server to process both original S3
and extended requests. The performance of the original
S3 operations are also controlled by Papio.

3 Implementation

A set of client and server implementation to support the
extended operations is called PapioS3. The PapioS3

Figure 1: PapioS3 overview

Figure 2: Performance of concurrent writes

server has been implemented based on RADOS Gate-
way (RGW) [8]. As shown in Figure 1, RGW runs as
a CGI program and interacts with the Web server via
FastCGI. The PapioS3 client has been implemented with
JetS3t [6], which is modified to support the S3 exten-
sion and improve multipart uploads and downloads. Sup-
port of the multipart operations is important in S3 be-
cause a single stream of ‘PUT Object’ and ‘GET Ob-
ject’ does not achieve enough performance between S3’s
client and server even when backend I/O resources are
available. Note that the performance is neither reserved
nor controlled between the S3’s client and server. In the
multipart operations, as data are transferred in parallel
streams, a single S3 client can have high performance.

4 Performance Evaluation

The performance of the prototype was evaluated on the
situation where 5 clients accessed the same S3 server
with different performance requirements. In this exper-
iment, the S3 server had only one storage server of Pa-
pio and therefore Papio needed to control I/O through-
put of the storage server to satisfy the demand of each
client. Figure 2 and 3 show the measured performance
of the concurrent operations for write and read respec-
tively. Available throughput of the storage server was
shared properly and every client achieved slightly higher
rate than the requested rate.

Figure 3: Performance of concurrent reads

5 Conclusion and Future Work

Extended I/O operations of S3 REST API have success-
fully provided the QoS capability to respond the indi-
vidual user’s request. However, to examine the effect of
PapioS3 in the production environment, further evalua-
tion in various concurrent access cases should be con-
ducted on a larger environment. In addition, the perfor-
mance reservation is not supported in the S3 interface.
At present, the reservation can be made by the command-
line tool included in Papio or another Web-services based
protocol [5]. Integration of the reservation into the cloud
storage management through S3, CDMI [4], etc., and co-
allocation with other types of cloud resources, for exam-
ple the network resource between S3’s client and server,
are a future work.

Acknowledgment

A part of this work was supported by KAKENHI
(23680004).

References

[1] Amazon EBS. http://aws.amazon.com/ebs/.
[2] Amazon EC2. http://aws.amazon.com/ec2/.
[3] Amazon S3. http://aws.amazon.com/s3/.
[4] CDMI (Cloud Data Management Interface).

http://www.snia.org/cdmi.
[5] GNS-WSI version 3. http://www.g-lambda.net/.
[6] JetS3t. http://jets3t.s3.amazonaws.com/index.html.
[7] OpenStack. http://www.openstack.org/.
[8] RADOS Gateway.

http://ceph.com/docs/master/radosgw/.
[9] Swift. http://swift.openstack.org/.

[10] TANIMURA, Y., KOIE, H., KUDOH, T., KOJIMA,
I., AND TANAKA, Y. A Distributed Storage System
Allowing Application Users to Reserve I/O Perfor-
mance in Advance for Achieving SLA. In Proceed-
ings of the 11th ACM/IEEE International Confer-
ence on Grid Computing (2010), pp. 193–200.

2

