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Increased consolidation in virtualized datacenters and
public clouds has raised the importance of allocating
shared server resources fairly among multiple tenants. In
the storage domain, tiered storage made up of heteroge-
neous memory and storage devices are now the norm in
high-end systems. In this paper we consider a two-tiered
storage system made up of SSDs and hard disks (HDs),
and address some of the challenges in achieving both
high utilization and fair allocation. Our work is comple-
mentary to fairness versus efficiency tradeoffs studied in
the context of sequential versus random IOs (e.g. [6, 5]).
For tiered storage, [1, 2, 3] emphasized fairness but did
not explicitly consider system utilization.

The storage system being considered is composed of
SSDs and HD arrays. A client makes IO requests that
may be served from either the SSD (a hif) or the HD (a
miss), based on the hit ratio. The hit ratio will change
with different application phases, but is relatively stable
within a phase. The client hit ratio is monitored and used
as an input to our resource allocator and scheduler.

We illustrate the tradeoff between utilization and fair-
ness with a simple example. Suppose the HD and SSD
have throughputs of 100 IOPS and 1000 IOPS respec-
tively. A fair scheduler assigns throughputs in propor-
tion to the assigned weights of the clients. Suppose
two continuously-backlogged clients 1 and 2 have equal
weights, and hit ratios of 4; = 0.5 and Ay = 1.0. The
access pattern using a fair scheduler is shown in Fig-
ure 1(a). The throughputs for the two clients are 200
IOPS each. The utilization of the disk is 100% but the
SSD is only 30%. To fully utilize the SSD, the client
weights are changed to 2:9. With this ratio, the through-
put of client 1 is still 200 IOPS but 2’s throughput in-
creases to 900 IOPS (see Figure 1(b)). While the relative
allocations are no longer 1 : 1, the system throughput in-
creases from 400 IOPS to 1100 IOPS. Furthermore, in
this example, the throughput of client 1 is not reduced by
the increased allocation to 2.

In other cases, the allocation of a client may decrease

significantly when the weights are changed to increase
utilization. For instance, suppose the HD throughput is
200 IOPS, the clients had hit ratios #; = 0.1 and 4, =0.9,
and equal weights. In this case, their throughputs under
fair scheduling would be 200 IOPS each, but the SSD
utilization is only 20%. Changing the ratio of the weights
to 1 : 11 results in 100% utilization of both devices, but
the allocation of client 1 falls to 100 IOPS while the other
increases to 1100 IOPS.
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Figure 1: Access pattern of example

We propose to maximize the system utilization in a
multi-tiered storage system, by dynamically computing
weights for the clients, based on their measured hit ratios.
However, to prevent the allocation of an individual client
from falling too low (as in the second example), each
client is guaranteed a minimum allocation or reservation.

Allocation Model: Each client i has a reservation func-



tion R;(h) and limit function L;(h). At periodic (or event-
triggered) intervals, the system computes the allocations
for each client based on its measured hit ratio. The goal is
to maximize system utilization while satisfying capacity
constraints and clients’ reservation and limits. Admis-
sion control (see below) guarantees a feasible solution.
The computed allocations are used as dynamic weights
by a proportional weight scheduler. By allocating IOs in
this ratio, all reservations will be met and excess capacity
is allocated in a way that maximizes system utilization.

Let C; denote the IOPS allocated to client i, and %p
and Bssp denote the IOPS capacity of the HD and SSD.
The following linear programming optimization prob-
lem can be formulated and solved using any standard LP
solver: Maximize )} | C; subject to: (i) Y., C; x h; <
Gssp (i) Y1 Cix (1 —h;) < €p (iii) C; > Ri(h;) (iv)
C; < Li(h;), where h; is the measured hit ratio for client
i, 1 <i<n. We must also deal with changes to the hit
ratio between the resource-allocation instants. We use
a scheduler similar to mClock [4] to ensure that reserva-
tions continue to be met even as the server capacity varies
due to changes in the hit ratio. The computed weights
are used as the shares, and reservations and limits are
dynamically updated based on the changing hit ratios.

An additional issue to be addressed is admission con-
trol, which must guarantee enough system capacity to
meet the reservations. Since throughputs vary with hit
ratio, this is a challenging issue. An IOPS that is reason-
able when accesses are mainly to SSD, will also require
a huge HD bandwidth reservation in case the hit ratio
falls. We therefore specify the reservation of a client i by
a non-decreasing function R;(h) of the hit ratio. One can
check whether all reservation can be met by calculating
the maximum aggregate load on each device; this will
be the maxima of the functions ¥; i x R;(h) (SSD) and
¥.(1—h) x R;(h) (HD).

Evaluation: Preliminary evaluation is done using a
process-driven simulator. Figure 2 shows the simula-
tion results with a HD of 200 IOPS and SSD of 1000
IOPS. There are two clients with hit-ratios of 0.5 and
1.0. At time 410s the hit-ratios of the clients fall to 0.1
and 0.9 respectively. We assume reservations and limits
of (0,2000) for both clients. Figure 2(a) and Figure 2(b)
show the results without and with adaptive allocation re-
spectively. The adaptive approach pulls the utilization
back up when the new allocations are made at 500s. If
we assigned client 1 a reservation of 125 IOPS, then after
500s it gets its reservation instead of 100 IOPS. However,
the system cannot achieve 100% utilization, and client 2
only receives 875 IOPS at this point.

We continue to explore the tradeoffs between fairness
and allocation in tiered storage with system implementa-
tions and by extending the model to include shares.
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Figure 2: Throughput (a) without dynamic controls and
(b) with adaptive weights
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