
Radio+Tuner: A Tunable Distributed Object Store
Dorian J. Perkins ∗ †, Curtis Yu †, and Harsha V. Madhyastha

University of California, Riverside

1 Problem Statement
The primary reason for diversity of distributed storage
systems is that no single design for a distributed stor-
age system is cost-optimal for meeting the latency and
throughput SLOs in all possible workloads. In other
words, a distributed object store that satisfies the SLOs
for a particular workload at minimum cost (in compar-
ison to other object stores) will incur higher costs than
alternate storage systems on other workloads.

Therefore, an application administrator today is faced
with the onerous task of choosing from the large variety
of available object stores; an incorrect choice may signifi-
cantly inflate costs necessary to meet performance SLOs.
Furthermore, as new workloads emerge, none of the ex-
isting systems may be a good match, thus necessitating
the development of new object stores. This is because ex-
isting systems are inflexible, having assumptions of their
target workload are baked into their implementation, and
making it unclear how any particular system should be
modified in order for it to be well-suited for a workload
other than that for which it was designed. While any
existing system can likely meet an application’s perfor-
mance goals with infinite resources, we believe this is the
wrong approach.

2 Motivation
Our work is motivated by the inter-dependence between
the configuration in which data is stored and the hardware
necessary to meet performance SLOs. We demonstrate
this using three object stores—HDFS, Voldemort, and
Haystack—that have been designed for disparate work-
loads. HDFS, which mimics the design of GFS, is well-
suited for storing and processing large objects at high
throughput. Voldemort mimics the design of Dynamo,
which was designed to store shopping carts on Amazon
and to serve GETs/PUTs on these small objects with low
latencies. Finally, Haystack is designed to store photos
uploaded to Facebook, and is optimized to enable low-
latency reads on write-once read-many objects. Since
Haystack is not available for public use, we use Bitcask
to build Haystack*, an imitation of Haystack’s design.

We test the performance offered by these three object
stores on the three workloads that are the target work-
loads for these systems. Though these workloads are rel-
atively simplistic (e.g., we consider no skew across ob-
jects either in terms of size or read/write rates), these suf-

∗ Presenting author. † This author is a student.

 0

 0.25

 0.5

 0.75

 1

Workload 1 Workload 2 Workload 3

S
LO

 / 
M

ea
su

re
d 

La
te

nc
y HDFS Voldemort Haystack*

Figure 1: Comparison of three object stores with respect to
their ability to meet the SLOs in three different workloads.

fice for our purpose of demonstrating the variance in a
particular system’s performance across workloads. For
each (object store, workload) pair, we plot the ratio of the
GET latency SLO for that workload to the corresponding
percentile of GET latencies measured when using that ob-
ject store to serve the workload (Figure 1). For example,
the bar for Voldemort on Workload2 is the ratio of 100
ms (the SLO in Workload2) to the 99th percentile GET
latency when using Voldemort for Workload2.

Overall, though the cost of hardware was the same in
the deployments of all three object stores, the ability to
meet the performance SLOs associated with a particular
workload varies significantly across the object stores. In
all cases where the SLOs were not met, a larger storage
cluster would be necessary, thus showing that the wrong
choice of storage configuration can inflate the cost neces-
sary to meet performance SLOs.

We observe that existing object stores are inflexible be-
cause they choose to implement each of their components
in one particular manner—that which is best suited for the
system’s target workload. As a result, though these sys-
tems expose several configuration parameters and tweak-
ing these parameters can significantly vary performance,
the range of parameters is limited.

3 Overview
Motivated by the inflexibility of existing object stores, we
design a tunable object store, Radio, and its associated
configuration engine, Tuner. At this time, Radio offers a
simple PUT/GET interface (Figure 2), but is extensible to
other types of transactions.

3.1 Radio object store
In contrast to existing object stores, Radio makes no a pri-
ori assumptions of its input workload. Radio can be de-
ployed in a range of configurations, and in any particular
deployment scenario, one can tune it to that configuration
which is well-suited for the target workload.

1



Data	
  Storage	
  Servers

NodeMetadataStores

Client

1.	
  GET_OBJ_INFO(obj_name)
2.	
  GET_CHUNK_LOC(chunk_name)

3.	
  GET_CHUNK_DATA
(chunk_name,	
  disk_index)

Data
Store

Disk	
  
Metadata	
  
Store

4.	
  
GET_CHUNK_OFFSET

(chunk_name)

(a)

Figure 2: Interaction between Radio’s components to serve
GETs

Radio’s design is based on the principle of separating
mechanism from policy. We partition Radio into the log-
ical components that any object store must implement—
storing metadata on how objects are split into chunks,
storing metadata of where chunks are stored on disk, and
storing the chunks themselves on disk. We permit sev-
eral implementations of each component, with all imple-
mentations of a component exporting the same interface.
Each of the implementations for any component presents
a different trade-off between performance and cost. Thus,
in any particular deployment scenario, we can select a
specific implementation for each of Radio’s components,
such that the chosen combination of implementations is
well-suited for the target workload. Moreover, as new
workloads emerge, we need only add new implementa-
tions for specific components rather than develop a new
object store. Since new implementations of a component
export the same interface, they can be paired with any one
of the implementations of the other two components.

3.2 Configuring Radio with Tuner
Though the Radio object store is tunable, choosing the
right configuration for it manually will be onerous. For
every deployment, it is impractical for one to choose the
right configuration of Radio by testing each empirically.

Therefore, we develop Tuner—a configuration engine
associated with the Radio object store. To select the ap-
propriate configuration of Radio for any given deploy-
ment, Tuner takes as input characterizations of the 1)
cluster hardware, 2) application’s workload, 3) perfor-
mance SLOs, and 4) available implementations of Ra-
dio’s components. Given these inputs, Tuner abstractly
navigates the search space of all possible configurations
of Radio. For each configuration, Tuner estimates the
cost of hardware that will be necessary to meet the per-
formance SLOs if Radio were deployed in that particular
configuration. Tuner then picks that configuration with
the lowest cost estimate.

4 Initial Results
Our initial results demonstrate that our implementation of
Radio can adapt well to different workloads.

 0

 10

 20

 30

 40

 50

Workload1 Workload2 Workload3

C
os

t (
th

ou
sa

nd
s 

of
 $

) Config1
Config2
Config3

Figure 3: Comparison of cost to meet SLOs for different work-
loads with different Radio configurations.

4.1 Evaluation setup
Cluster. Our experiments are run on a cluster of 12 1U
rack servers, each with two hyper-threaded quad-core In-
tel Xeon 2.26 GHz CPUs, 24 GB RAM, and eight 500
GB 7.2K RPM SAS drives. All servers are on a shared
10 GbE network. We deploy Radio on a subset of these
servers and test it on several workloads.

Workloads. In our evaluations, we use three work-
loads with disparate characteristics, each well-suited for
either HDFS, Dynamo, or Haystack. In all cases, we con-
sider the storage capacity requirement to be 5 TB. We
have implemented a custom workload generator that out-
puts a trace of GET/PUT requests in keeping with the
workload’s properties. When experimenting with any
given workload, we play several of such traces in parallel
from a separate set of 4 servers, which are also connected
to the storage servers with 10 Gig Ethernet. The wide
variance in these three workloads tests various facets of
Radio and Tuner.

4.2 Configurability of Radio
We evaluate Radio’s adaptability to different workloads.
For this, we provide each of our three example work-
loads, along with characterizations of our hardware, as
input to Tuner. Tuner outputs the cost-effective configu-
ration for each, where the ith configuration is the output
for the ith workload. For each workload, we then deploy
Radio in each of the three configurations, and gather mea-
surements at different scales to determine the number of
servers necessary to meet the workload’s SLO. In some
cases, our cluster of 12 servers is insufficient to meet the
SLO.

Figure 3 plots, for every workload, the cost incurred
in meeting the SLO with each of the considered config-
urations. For each workload, we see that the cost nec-
essary to meet the SLO is significantly less with the Ra-
dio configuration chosen by Tuner. This is due to two
reasons. First, when we keep the cost the same across
all three configurations, the performance obtained with
Radio configurations that are not well-suited for the par-
ticular workload is well below the SLO (figure omitted).
Second, this reflects Tuner’s ability to accurately pick the
most cost-effective configuration.

2


	Problem Statement
	Motivation
	Overview
	Radio object store
	Configuring Radio with Tuner

	Initial Results
	Evaluation setup
	Configurability of Radio


