
An Efficient Data Deduplication 

based on Tar-format Awareness in Backup Applications 
 

Baegjae Sung*, Sejin Park*, Youngsup Oh*, Jeonghyeon Ma*, Unsung Lee* and Chanik Park 

Department of Computer Science and Engineering, POSTECH, Pohang, South Korea 

{jays,baksejin, youngsup, doitnow0415, dnsrjd1212, cipark}@postech.ac.kr 

               * student authors 

 
Abstract 

Disk-based backup storage system is utilized widely, 

and data deduplication is becoming an essential tech-

nique in the system because of the advantage of a space-

efficiency. Usually, user’s several files are aggregated 

into a single Tar file at primary storage, and the Tar file 

is transferred and stored to the backup storage system 

periodically (e.g., a weekly full backup) [1]. In this pa-

per, we present a boundary-aware chunking (BAC) 

technique in a data deduplication backup storage system 

to improve space-efficiency by using a hint of the stor-

ing Tar file.  

Chunking technique has the role of making chunks. 

Because chunks are basic granularity for detecting and 

eliminating duplicate data by checking the hash value of 

the chunk, space-efficiency of data deduplication sys-

tem is varied by chunking technique. Static chunking 

(SC) [2] divides storing data into fixed size (e.g.., 8 

KB) chunks. In other words, locations of every multi-

ples of 8 KB of storing data are chunk boundary. In 

order to improve space-efficiency by solving boundary 

shifting problem, content-defined chunking (CDC) [3, 

4] is proposed. CDC divides the storing data into varia-

ble size (e.g., expected size 8 KB) chunks. In other 

words, CDC technique choose proper chunk boundary 

by examining a content of the storing data.  

BAC technique is an extension of CDC to choose 

more proper chunk boundary by using a hint of the stor-

ing Tar file. The Tar file consists of a sequence of 

header part and content part. Header part size is fixed 

512 B and contains information of sub-file, such as file 

name, file size. Content part size is N * 512 B and con-

tains content of sub-file. BAC can know end location of 

header part and end location of content part by extract-

ing file size information from header part. We define 

these locations as absolute chunk boundary (ACB) that 

is additional chunk boundary. Basic chunking flow of 

BAC is similar with CDC except utilizing the ACB – 

Figure 1. Hash value f is generated (e.g., Rabin finger-

print) by content of small fixed size sliding window 

(e.g., 48 B) from storing data. If hash value f meets par-

ticular condition (e.g., f mod 8192 = 0) then the location 

of window is chunk boundary, otherwise window is 

shifted. If shifting window is reached to ACB then the 

location is chosen to chunk boundary even though hash 

value does not meet the condition. In order to prevent 

too small or too large chunk size, minimum and maxi-

mum chunk size restriction is utilized. 

By using ACB for chunk boundary, start location and 

end location of sub-files are adjusted. It means first 

chunk included in a sub-file is always started from start 

location of sub-file regardless of any adding or remov-

ing or modification of previous sub-file. Likewise last 

chunk included in a sub-file is always ended to end lo-

cation of sub-file regardless of any modification of cur-

rent sub-file. Also, easily changeable header part is iso-

lated from partially modifiable content part when chunk 

is created. In other words, BAC technique can redeem 

negative effect of adding or removing or modification 

of sub-files. We show a simplified example of BAC 

when storing input tar file including comparison of SC 

and CDC - Figure 2. We assume two files are aggregat-

ed into a tar file and the two files have same content. In 

(a) SC, five fixed-size chunks are generated. It does not 

find any duplicate chunks. In (b) CDC, it choose two 

Fig. 1. Boundary-aware chunking technique 
 

Fig. 2. Chunking comparison of SC, CDC and BAC 
 



chunk boundary on C1 content by examining content 

and generate five chunks. It finds a single duplicate 

chunk. In (c) BAC, it makes first chunk that contains 

header part by ACB, and it makes second chunk by ex-

amining content and third chunk by ACB under content 

part. Likewise other chunks are generated. It finds two 

duplicate chunks that contains more duplicate region 

than CDC. 

To evaluate benefit of our BAC technique, we build 

upon the open-source Opendedup file system [5]. Be-

cause default chunking technique of Opendedup is SC, 

we modified the filesystem to utilize CDC technique or 

BAC technique. We use 8 KB expected chunk size, 2 

KB minimum chunk size, and 14 KB maximum chunk 

size. Tested backup system is built upon Intel Xeon 

E5620 2.40GHz (2xQuad core), 16 GB memory, and 

7200 RPM SATA disk. To eliminate network interfer-

ence, we copy tar backup file from local ext4 file sys-

tem to local deduplication file system. We tested a 

linux-20-dist workload that storing a single tar file that 

is aggregated different 20 versions of Linux distribu-

tions. The workload has similar characteristics of sever-

al full backup. 

Deduplication ratio (Input size/Stored size) shows a 

space-efficiency of data deduplication system. We 

measured the result of deduplication ratio using linux-

20-dist workload with SC, CDC and BAC – Figure 4. 

Deduplication ratio of BAC shows 7 times higher than 

SC, and 3 times higher than CDC. It shows benefit of 

BAC’s redemption of negative effect of adding or re-

moving or modification of sub-files of a tar file. Write 

throughput also measured using linux-20-dist workload. 

We add ext2 naive file system write throughput for 

comparison. Ext2 and SC have almost same throughput 

even though SC has chunking overhead. We think the 

reason comes from parallel 20 threads write in 

Opendedup filesystem. Throughput of BAC and CDC 

shows half of SC. Interesting point is BAC is little high-

er than CDC, because actual writing chunk data to disk 

is 3 times lower than CDC even though BAC has more 

operational overhead such as reading file size from 

header part, more chunks. 

BAC data deduplication file system is ongoing work. 

We need to evaluate our BAC technique using various 

workloads. After detailed evaluation, we plan to opti-

mize the BAC data deduplication file system. In this 

paper, we concentrated on only Tar file format for ex-

tracting ACB hint. However, BAC can be applied to 

other formats such as VM image, ISO. We also plan to 

apply BAC technique for these formats. 

 

Acknowledgment 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korean 

Government (MEST) (No. 2011-0016972) and IT Con-

silience Creative Program of MKE and 

NIPA (C1515-1121-0003) 

 

References 

[1] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. 

Smaldone, M. Chamness, and W. Hsu, "Characeiristics 

of Backup Workloads in Production Systems", In 

FAST'12: Proceedings of the 10th USENIX conference 

on File and Storage Technologies, 2012. 

[2] D. Meyer and W. Bolosky, "A study of practical 

deduplication", In FAST’11: Proceedings of 9th Con-

ference on File and Storage Technologies, February 

2011. 

[3] B. Zhu, K. Li, and H. Patterson, "Avoiding the disk 

bottleneck in the Data Domain deduplication file sys-

tem", In FAST’08: Proceedings of the 6th Conference 

on File and Storage Technologies, pages 269–282, Feb-

ruary 2008. 

[4] F. Guo and P. Efstathopoulos, "Building a highper-

formance deduplication system", In Proceedings of the 

2011 USENIX conference on USENIX Annual Tech-

nical Conference, 2011. 

[5] Opendedup, http://opendedup.org/ 

Fig. 3. Deduplication ratio 

 

Fig. 4 write throughput 

 


